DOI QR코드

DOI QR Code

Synthesis and Applications of Dicationic Iodide Materials for Dye-Sensitized Solar Cells

  • Nam, Heejin (Interdisciplinary School of Green Energy, UNIST) ;
  • Ko, Yohan (Department of Materials Chemistry and Engineering Konkuk University) ;
  • Kunnan, Sakeerali C. (Department of Materials Chemistry and Engineering Konkuk University) ;
  • Choi, Nam-Soon (Interdisciplinary School of Green Energy, UNIST) ;
  • Jun, Yongseok (Department of Materials Chemistry and Engineering Konkuk University)
  • Received : 2018.12.13
  • Accepted : 2018.12.28
  • Published : 2019.06.30

Abstract

Dye-sensitized solar cells (DSSCs) have been receiving growing attentions as a potential alternative to order photovoltaic devices due to their high efficiency and low manufacturing cost. DSSCs are composed of a photosensitizing dye adsorbed on a mesoporous film of nanocrystalline $TiO_2$ as a photoelectrode, an electrolyte containing triiodide/iodide redox couple, and a platinized counter electrode. To improve photovoltaic properties of DSSCs, new dicationic salts based on ionic liquids were synthesized. Quite comparable efficiencies were obtained from electrolytes with new dicationic iodide salts. The best cell performance of 7.96% was obtained with dicationic salt of PBDMIDI.

Keywords

E1JTC5_2019_v10n2_214_f0001.png 이미지

Fig. 1. Current density-voltage (J-V) characteristics of the each devices with different ionic salt in acetonitrile HDMII (■), PBDMIDI (●), EBDMIDI (▲), PBPyDI (▼) measured under AM1.5G illumination from a calibrated solar simulator with irradiation intensity of 100 mW cm-2

E1JTC5_2019_v10n2_214_f0002.png 이미지

Fig. 2. Current density-voltage (J-V) characteristics of the each devices with different ionic salt HDMII (■), PBDMIDI (●), EBDMIDI (▲), PBPyDI (▼) with different ratios of solvent (a) AcCN:PC=7:3, (b) AcCN:PC=5:5, (c) AcCN:PC=3:7, (d) PC, (v/v) measured under AM1.5G illumination from a calibrated solar simulator with irradiation intensity of 100 mW cm-2

E1JTC5_2019_v10n2_214_f0003.png 이미지

Fig. 3. Current density-voltage (J-V) characteristics of the each devices with different ionic salt HDMII (■), PBDMIDI (●), EBDMIDI (▲), PBPyDI (▼) with different ratios of solvent (a) AcCN:EC=7:3, (b) AcCN:EC=5:5, (c) AcCN:EC=3:7 (v/v), measured under AM1.5G illumination from a calibrated solar simulator with irradiation intensity of 100 mW cm-2

E1JTC5_2019_v10n2_214_f0004.png 이미지

Fig. 4. Current density-voltage (J-V) characteristics of the each devices with different ionic salt in GBL: EC=7:3 (v/v), HDMII (■), PBDMIDI (●), EBDMIDI (▲), PBPyDI (▼) measured under AM1.5G illumination from a calibrated solar simulator with irradiation intensity of 100 mW cm-2

Table 1. Ionic salts for the experiment and their abbreviations

E1JTC5_2019_v10n2_214_t0001.png 이미지

Table 2. Electrolyte ionic conductivity and photovoltaic parameters of the devices different salts dissolved in acetonitrile

E1JTC5_2019_v10n2_214_t0002.png 이미지

Table 3. Photovoltaic parameters of the devices different salts dissolved in different acetonitrile (AcCN):propylene carbonate (PC) volume ratios.

E1JTC5_2019_v10n2_214_t0003.png 이미지

Table 4. Photovoltaic parameters of the devices different salts dissolved in different acetonitrile (AcCN):propylene carbonate (EC) volume ratios

E1JTC5_2019_v10n2_214_t0004.png 이미지

Table 5. Photovoltaic parameters of the devices different salts dissolved in acetonitrile(AcCN): γ-Butyrolactone=7:3 (v/v)

E1JTC5_2019_v10n2_214_t0005.png 이미지

References

  1. Y. Jun, J. H. Park, and M. G. Kang, Chem. Commun., 2012, 48(52), 6456-6471. https://doi.org/10.1039/c2cc30733b
  2. C. L. Jung, Han, C. H., D. K. Moon, and Y. Jun, Chemsuschem, 2014, 7(10), 2839-2844. https://doi.org/10.1002/cssc.201402232
  3. C. L. Jung, J. Lim, J. H. Park, C. H. Han, and Y. Jun, RSC Adv., 2014, 4, 243-247. https://doi.org/10.1039/C3RA45507F
  4. A. K. Arof, I. M. Noor, M. H. Buraidah, I. Albinsson, B. E. Mellander, Electrochim. Acta, 2017, 251, 223-234. https://doi.org/10.1016/j.electacta.2017.08.129
  5. Wang, X. & Stanbury, and D. M. Inorg. Chem., 2006, 45(8), 3415-3423. https://doi.org/10.1021/ic052022y
  6. M. Wang, N. Chamberland, L. Breau, J. Moser, R. Humphry-Baker, B. Marsan, S. M. Zakeeruddin, M. Gratzel, Nat. Chem. 2010, 2(5), 385-389. https://doi.org/10.1038/nchem.610
  7. N. Jeon, S. G. Jo, S. H. Kim, M. S. Park, D. W. Kim, J. Electrochem. Sci. Technol., 2017, 8(3), 257-264. https://doi.org/10.5229/JECST.2017.8.3.257
  8. K. Zouhri, Renewable Energy, 2018, 126, 210-225. https://doi.org/10.1016/j.renene.2018.03.045
  9. H. Kusama, J. Photochem. Photobiol. A: Chem., 2018, 357, 60-71. https://doi.org/10.1016/j.jphotochem.2018.02.024
  10. I. Sagaigak, G. Huertas, A. Nguyen Van Nhien, F. Sauvage, Green Chem., 2018, 20(5), 1059-1064. https://doi.org/10.1039/C7GC03429F
  11. S. Jeon, Y. Jo, K.J. Kim, Y. Jun, and C.H. Han, ACS Appl. Mater. Interfaces, 2011, 3(2), 512-516. https://doi.org/10.1021/am101093b
  12. R. Kern, R. Sastrawan, J. Ferber, R. Stangl, and J. Luther, Electrochimica Acta, 2002, 47(26), 4213-4225. https://doi.org/10.1016/S0013-4686(02)00444-9
  13. C. Zafer, K. Ocakoglu, C. Ozsoy, and S. Icli, Electrochimica Acta, 2009, 54(24), 5709-5714. https://doi.org/10.1016/j.electacta.2009.05.016
  14. R. P. Seward, and E. C. Vieira, J. Phys. Chem., 1958, 62(1), 127-128. https://doi.org/10.1021/j150559a041
  15. A. Chagnes, H. Allouchi, B. Carre, G. Odou, P. Willmann, and D. Lemordant, J. Appl. Electrochem., 2003, 33(7), 589-595. https://doi.org/10.1023/A:1024904918401
  16. A. Chagnes, B. Carre, P. Willmann, R. Dedryvere, D. Gonbeau, and D. Lemordant, J. Electrochem.Soc., 2003, 150(9), A1255-A1261. https://doi.org/10.1149/1.1597882