• Title/Summary/Keyword: Spinel

Search Result 712, Processing Time 0.03 seconds

Effects of MgO content of Spinel on the Reaction of Spinel with CaO-Al$_2$O$_3$-SiO$_2$ Slag (CaO-Al$_2$O$_3$-SiO$_2$계 슬래그와 스피넬의 반응에 미치는 스피넬중의 MgO함유량의 영향)

  • 조문규;홍기곤
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.410-416
    • /
    • 1999
  • The reactivity of three kinds of spinels which CaO-Al2O3-SiO2 slag was investigated in terms of mineral phases and microstructures. New crystal products were not formed by reaction of 12CaO.7Al2O3 in the slag with spinels and free MgO components was preferenctially dissolved into slag for MgO-rich spinel and stoichiometric spinel. Meanwhile mineral phase was changed from 12CaO.7Al2O3 to CaO.Al2O3 to CaO.2Al2O3 finally to CaO.6Al2O3 having high melting point for Al2O3 -rich spinel. The Fe-oxide component of the slag was taken up by only stoichiometric spinel grains within the spinel clinker and the trapped amount of Fe-oxide was independent of MgO content of MgO in spinel clinker the more th resistance to slag corrosion but the less resistance to slag penetration.

  • PDF

Control of Microstructures and Properties of Composites of the $Al_2O_3-ZrO_2-Spinel$ System: II. $Al_2O_3-ZrO_2-Spinel$ Composites Prepared by the Solution Infiltration Method ($Al_2O_3-ZrO_2-Spinel$계 복합체의 미세구조 및 물성제어: II. 용액침투법에 의한 $Al_2O_3-ZrO_2-Spinel$ 복합소결체)

  • 현상훈;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.811-818
    • /
    • 1993
  • Al2O3/ZrO2-Spinel composites were prepared by infiltrating magnesium sulfate solution into the porous preform made from Al2O3-20wt% ZrO2 composite powders derived through an emulsion route. The microstructure and composition of the modified composites could be controlled by manipulating the presingtering temperature of the preform, infiltration time, and so on. It was found that spinel phases were concentrated near the surface than in the interior of the Al2O3/ZrO2-Spinel composites infiltrated for 6hrs, while spinel phases were uniformly distributed in the comosites infiltrated for 2 days. The relative density and fracture toughness of the composite infiltrated for 6 hrs were 98.6% and 7.2MN/m3/2, respectively.

  • PDF

Spinel$(MgAl_2O_4)$ single crystal growth by floating zone method (Floating zone 법에 의한 Spinel$(MgAl_2O_4)$단결정 성장)

  • Seung Min Kang;Byong Sik Jeon;Keun Ho Orr
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.3
    • /
    • pp.325-335
    • /
    • 1994
  • The spinel $MgO.Al_20_3$ single crystals were grown by FZ (floating zone) method. Its melting point is about, $2135^{\circ}C$ and is important to the process of the growth from the melt. There have been some reports of the growth by Czochralski and Verneuil method. However, this study is the first trial to the spinel crystal with the application of FZ method. In this study, $MgAl_2O_4$ spinel crystals were grown by using FZ method which uses the ellipsoidal mirror furnace having infrared halogen lamps as a heat source. With dopants of transition metal ions, it was possible to melt the feed rod which does not absorb the infrared rays due to the transparent properties to infrared ray of spinel itself and the red, green and blue colored spinel single crystals could be grown more easily. As a conclusion, the purpose of this study is to find the spinel single crystal growth mechanism with respect to th growth interfaces and molten zone stability and to characterize the state of growth resulting from the concavity to the melt of interfaces.

  • PDF

Sintering and Microstructure of Alumina/Mica and Spinel/Mica Composites

  • Suzuki, Sofia-Saori;Taruta, Seiichi;Takusagawa, Nobuo
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.363-367
    • /
    • 1998
  • Alumina/mica and spinel/mica composites were fabricated by sintering of compacts containing 20 mass% fluoromica ($KMg_3AlSi_3O-{10}F_2$) glass and alumina or spinel. In both composites, mica precipitated as plate-like crystals at temperatures lower than $1300^{\circ}C$ and melted at $1300^{\circ}C$ to $1400^{\circ}C$. In alumina/mica composites, alumina and glass reacted to produce spinel, and the densification progressed by the solution-precipitation of alumina. Consequently, the glass composition changed and the mica did not precipitate at temperatures higher than $1400^{\circ}C$. However, mica precipitated after a reheating process. In spinel/mica composites, the glass composition did not change. After the mica phase melted, it recrystallized during slow cooling. The relative density reached the maximum at $1500^{\circ}C$ for alumina/mica and at $1300^{\circ}C$ spinel/mica composites, and decreased at further high temperatures.

  • PDF

Oxidative Dimerization of Methane over Lead Aluminate Spinel Catalysts

  • 장종산;박상언
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1148-1152
    • /
    • 1995
  • Oxidative dimerization of methane to C2-hydrocarbons was performed over lead aluminate spinel catalysts. These spinel catalysts were prepared by co-precipitation, aerogel, and sol-gel methods. The active phase of lead aluminate oxides was found to be PbAl2O4 spinel. The activities of the catalysts were strongly dependent on the preparation method as well as the composition of PbAl2O4 phase. The proper oxygen mobility of PbAl2O4 spinel oxides appeared to be important to get high catalytic activity and selectivity for C2-hydrocarbon formation.

Structural, Magnetic, and Optical Studies on Normal to Inverse Spinel Phase Transition in FexCo3-xO4 Thin Films

  • Kim, Kwang-Joo;Kim, Hee-Kyung;Park, Young-Ran;Ahn, Geun-Young;Kim, Chul-Sung;Park, Jae-Yun
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.96-99
    • /
    • 2005
  • Phase transition from normal- to inverse-spinel structure has been observed for $Fe_xCo_{3-x}O_4$ thin films as the Fe composition (x) increases from 0 to 2. The samples were fabricated as thin films by sol-gel method on Si(100) substrates. X-ray diffraction measurements revealed a coexistence of two phases, normal and inverse spinel, for $0.76{\le}x{\le}0.93$. The normal-spinel phase is dominant for $x{\le}0.55$ while the inverse-spinel phase for $x{\ge}l.22$. The cubic lattice constant of the inverse-spinel phase is larger than that of the normal-spinel phase. For both phases the lattice constant increases with increasing x. X-ray photoelectron spectroscopy measurements revealed that both $Fe^{2+}$ and $Fe^{3+}$ ions exist with similar strength in the x=0.93 sample. Conversion electron $M\ddot{o}ssbauer$ spectra measured on the same sample showed that $Fe^{2+}$ ions prefer the octahedral $Co^{3+}$ sites, indicating the formation of the inverse-spinel phase. Analysis on the measured optical absorption spectra for the samples by spectroscopic ellipsometry indicates the dominance of the normal spinel phase for low x in which $Fe^{3+}$ ions tend to substitute the octahedral sites.

$V_2O_5$가 코팅된 Li-Mn spinel의 합성과 전기화학적 특성

  • Kim, Jun-Il;Lee, Jae-Won;No, Gwang-Cheol;Park, Seon-Min;Seon, Yang-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.268-268
    • /
    • 2009
  • Li-Mn spinel의 고온수영 특성을 향상을 위해 졸-겔법으로 $V_2O_5$를 Li-Mn spinel 표면에 코팅을 하였다. $V_2O_5$의 코팅양은 1, 3, 5wt%로 조절하여 코팅 양에 따른 특성변화를 조사하였다. XRD분석결과 $V_2O_5$가 코팅된 Li-Mn spinel을 $400^{\circ}C$에서 열처리시 $Mn(VO_3)_2$가 생성되는 것을 확인하였다. 충방전 테스트결과, 고온에서 $V_2O_5$를 코팅한 Li-Mn spinel이 우수한 수명을 나타냈다. 하지만 코팅량이 1wt%까지는 용량의 변화가 거의 없었고, 5wt% 코팅시 현격히 용량이 감소하였다.

  • PDF

A Study on the Cobalt Blue Spinel Stains (코발트 청색 채색료에 대한 연구)

  • 박순자
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.2
    • /
    • pp.66-71
    • /
    • 1978
  • The cobalt blue spinel stains (main composition; CoO:$Al_2O_3$=1 : 1) in CoO-NiO-$Al_2O_$3 and $CoO-Al_2O_3-Cr_2O_3$ system were prepared by the calcination of each component oxides to be adequate for the factory. The color development, the change of the lattice constnat of the spinel and its application to colored glazes were studied. The results were summarized as follows. 1) In CoO-Al_2O_3$ spinel, the excess addition of each component hardly made any variation in lattice constantand alumina-rich spinel specimens caused the brilliant blue color fade. 2) An increase of $Ni^{2+}$ in $CoO-NiO-Al_2O_3$ system, made the lattice constnat of the $CoO-Al_2O_3$ spinel smaller, and an increase of $Cr^{3+}$ in $CoO-Al_2O_3-Cr_2O_3$, larger. 3) Glazed stains under lead glaze were colored nearly same dark blue color fade.

  • PDF

Fabrication and Sintering Characteristic of MgO-Al2O3-SiO2 System Ceramic Raw Materials(Mullite, Spinel and Cordierite) II. Powder and Mechanical Properties of Mg-Al Spinel Ceramics Prepared by Alkoxide (MgO-Al2O3-SiO2계 요업원료(Mullite, Spinel, Cordierite)의 제조 및 소결특성 II. Alkoxide로 제조한 Mg-Al Spinel분말 및 소결체의 특성)

  • 김창은;이홍림;안용진;김배연
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.593-600
    • /
    • 1989
  • Fine spinel powder was prepared from the Mg-Al double alkoxide synthesized using magnesium powder, aluminum foil and sec-butyl alcohol. This powder was compared with powder prepared by mixing two commercial alkoxides. The spinelization was started at 50$0^{\circ}C$ and was almost completed at 100$0^{\circ}C$ with a good crystallinity in the double alkoxide system. In mixed alkoxide system, homogeneous spinel powder was not obtained and MgO existed as a second phase because of solubility and hydrolysis rate differences of two alkoxides. The relative density of specimen prepared by double alkoxide was 99% and specimen prepared by mixed alkoxide was 95%. The modulus of rupture of specimens prepared by double alkoxide and mixed alkoxide was 49.9kg/$\textrm{mm}^2$ and 41.6kg/$\textrm{mm}^2$, respectively.

  • PDF

Preparation and Properties of Magnesia-Alumina Spinel by SHS (SHS 법에 의한 Magnesia-Alumina Spinel 제조와 특성)

  • 최태현;전병세
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • Self-Propagating high temperature synthesis(SHS) technique was used to synthesize the spinel phase of MgAl2O from MgO and Al powder. Processing factors such as mixing time preheating temperature and ignition catalyst were varied to determine the optimum condition to form MgAl2O4 phase. The reaction products were heat treated at the temperature range of 120$0^{\circ}C$ and 150$0^{\circ}C$. to observe phase transformation of unreacted materials. Processing factors such as 48 hrs-mixing 80$0^{\circ}C$-preheating and 20wt% KNO3-ignition catalyst were effective of the formation of MgAl2O spinel. An activation energy 49.7kcal/mol. was calculated to form a MaAl2O4 spinel from unreacted materials.

  • PDF