FIGURE 1. The shifted slides
References
- G. Benkart, F. Sottile, and J. Stroomer, Tableau switching: algorithms and applications, J. Combin. Theory Ser. A 76 (1996), no. 1, 11-43. https://doi.org/10.1006/jcta.1996.0086
- A. S. Buch, A. Kresch, and H. Tamvakis, Littlewood-Richardson rules for Grassmannians, Adv. Math. 185 (2004), no. 1, 80-90. https://doi.org/10.1016/S0001-8708(03)00165-8
- S. Cho, A new Littlewood-Richardson rule for Schur P-functions, Trans. Amer. Math. Soc. 365 (2013), no. 2, 939-972. https://doi.org/10.1090/s0002-9947-2012-05653-4
- S.-I. Choi, S.-Y. Nam, and Y.-T. Oh, Bijections among combinatorial models for shifted Littlewood-Richardson coefficients, J. Combin. Theory Ser. A 128 (2014), 56-83. https://doi.org/10.1016/j.jcta.2014.07.007
- E. A. DeWitt, Identities Relating Schur s-Functions and Q-Functions, ProQuest LLC, Ann Arbor, MI, 2012.
- D. Grantcharov, J. H. Jung, S.-J. Kang, M. Kashiwara, and M. Kim, Crystal bases for the quantum queer superalgebra and semistandard decomposition tableaux, Trans. Amer. Math. Soc. 366 (2014), no. 1, 457-489. https://doi.org/10.1090/S0002-9947-2013-05866-7
- M. D. Haiman, On mixed insertion, symmetry, and shifted Young tableaux, J. Combin. Theory Ser. A 50 (1989), no. 2, 196-225. https://doi.org/10.1016/0097-3165(89)90015-0
- P. N. Hoffman and J. F. Humphreys, Projective Representations of the Symmetric Groups, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1992.
- G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Mathematics and its Applications, 16, Addison-Wesley Publishing Co., Reading, MA, 1981.
- O. Pechenik and A. Yong, Genomic tableaux, J. Algebraic Combin. 45 (2017), no. 3, 649-685. https://doi.org/10.1007/s10801-016-0720-8
- B. E. Sagan, Shifted tableaux, Schur Q-functions, and a conjecture of R. Stanley, J. Combin. Theory Ser. A 45 (1987), no. 1, 62-103. https://doi.org/10.1016/0097-3165(87)90047-1
- M. P. Schutzenberger, Quelques remarques sur une construction de Schensted, Canad. J. Math. 13 (1961), 117-128.
- M. P. Schutzenberger, Promotion des morphismes d'ensembles ordonnes, Discrete Math. 2 (1972), 73-94. https://doi.org/10.1016/0012-365X(72)90062-3
- L. Serrano, The shifted plactic monoid, Math. Z. 266 (2010), no. 2, 363-392. https://doi.org/10.1007/s00209-009-0573-0
- K. Shigechi, Shifted tableaux and product of Schur's symmetric functions, arXiv:1705.06437v1.
-
J. R. Stembridge, On symmetric functions and the spin characters of
$S_n$ , in Topics in algebra, Part 2 (Warsaw, 1988), 433-453, Banach Center Publ., 26, Part 2, PWN, Warsaw, 1990. - J. R. Stembridge, Shifted tableaux and the projective representations of symmetric groups, Adv. Math. 74 (1989), no. 1, 87-134. https://doi.org/10.1016/0001-8708(89)90005-4
- H. Thomas and A. Yong, A combinatorial rule for (co)minuscule Schubert calculus, Adv. Math. 222 (2009), no. 2, 596-620. https://doi.org/10.1016/j.aim.2009.05.008
- D. R. Worley, A theory of shifted Young tableaux, ProQuest LLC, Ann Arbor, MI, 1984.