References
- E. Bacry, S. Delattre, M. Hoffmann, and J. F. Muzy, Some limit theorems for Hawkes processes and application to financial statistics, Stochastic Process. Appl. 123 (2013), no. 7, 2475-2499. https://doi.org/10.1016/j.spa.2013.04.007
- C. Bordenave and G. L. Torrisi, Large deviations of Poisson cluster processes, Stoch. Models 23 (2007), no. 4, 593-625. https://doi.org/10.1080/15326340701645959
- P. Bremaud and L. Massoulie, Stability of nonlinear Hawkes processes, Ann. Probab. 24 (1996), no. 3, 1563-1588. https://doi.org/10.1214/aop/1065725193
- D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. I, second edition, Probability and its Applications (New York), Springer-Verlag, New York, 2003.
- A. Dassios and H. Zhao, A dynamic contagion process, Adv. in Appl. Probab. 43 (2011), no. 3, 814-846. https://doi.org/10.1239/aap/1316792671
- A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, second edition, Applications of Mathematics (New York), 38, Springer-Verlag, New York, 1998.
- E. Errais, K. Giesecke, and L. R. Goldberg, Affine point processes and portfolio credit risk, SIAM J. Financial Math. 1 (2010), no. 1, 642-665. https://doi.org/10.1137/090771272
- R. Fierro, V. Leiva, and J. Moller, The Hawkes process with different exciting functions and its asymptotic behavior, J. Appl. Probab. 52 (2015), no. 1, 37-54. https://doi.org/10.1239/jap/1429282605
- X. Gao, X. Zhou, and L. Zhu, Transform analysis for Hawkes processes with applications in dark pool trading, Quant. Finance 18 (2018), no. 2, 265-282. https://doi.org/10.1080/14697688.2017.1403151
- A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes, Biometrika 58 (1971), 83-90. https://doi.org/10.1093/biomet/58.1.83
- A. G. Hawkes and D. Oakes, A cluster process representation of a self-exciting process, J. Appl. Probability 11 (1974), 493-503. https://doi.org/10.2307/3212693
- P. Jagers, Branching Processes with Biological Applications, Wiley-Interscience, London, 1975.
- T. Jaisson and M. Rosenbaum, Limit theorems for nearly unstable Hawkes processes, Ann. Appl. Probab. 25 (2015), no. 2, 600-631. https://doi.org/10.1214/14-AAP1005
- T. Jaisson and M. Rosenbaum, Rough fractional diffusions as scaling limits of nearly unstable heavy tailed Hawkes processes, Ann. Appl. Probab. 26 (2016), no. 5, 2860-2882. https://doi.org/10.1214/15-AAP1164
- D. Karabash and L. Zhu, Limit theorems for marked Hawkes processes with application to a risk model, Stoch. Models 31 (2015), no. 3, 433-451. https://doi.org/10.1080/15326349.2015.1024868
- B. Mehrdad and L. Zhu, On the Hawkes process with different exciting functions, Preprint. arXiv: 1403.0994 (2015).
- Y. Seol, Limit theorems for discrete Hawkes processes, Statist. Probab. Lett. 99 (2015), 223-229. https://doi.org/10.1016/j.spl.2015.01.023
-
Y. Seol, Limit theorems for inverse process
$T_n$ of Hawkes process, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 1, 51-60. https://doi.org/10.1007/s10114-016-5470-y - Y. Seol, Moderate deviations for marked Hawkes processes, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 10, 1297-1304. https://doi.org/10.1007/s10114-017-6433-7
- Y. Seol, Limit theorems for the compensator of Hawkes processes, Statist. Probab. Lett. 127 (2017), 165-172. https://doi.org/10.1016/j.spl.2017.04.003
- S. R. S. Varadhan, Large Deviations and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, 46, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1984.
- S. Wheatley, V. Filimonov, and D. Sorrette, The Hawkes process with renewal immigration & its estimation with an EM algorithm, Computational Statistics & Data Analysis 94, 120-135 (2016). https://doi.org/10.1016/j.csda.2015.08.007
- L. Zhu, Central limit theorem for nonlinear Hawkes processes, J. Appl. Probab. 50 (2013), no. 3, 760-771. https://doi.org/10.1239/jap/1378401234
- L. Zhu, Moderate deviations for Hawkes processes, Statist. Probab. Lett. 83 (2013), no. 3, 885-890. https://doi.org/10.1016/j.spl.2012.12.011
- L. Zhu, Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims, Insurance Math. Econom. 53 (2013), no. 3, 544-550. https://doi.org/10.1016/j.insmatheco.2013.08.008
- L. Zhu, Limit theorems for a Cox-Ingersoll-Ross process with Hawkes jumps, J. Appl. Probab. 51 (2014), no. 3, 699-712. https://doi.org/10.1239/jap/1409932668
- L. Zhu, Process-level large deviations for nonlinear Hawkes point processes, Ann. Inst. Henri Poincare Probab. Stat. 50 (2014), no. 3, 845-871. https://doi.org/10.1214/12-AIHP532
- L. Zhu, Large deviations for Markovian nonlinear Hawkes processes, Ann. Appl. Probab. 25 (2015), no. 2, 548-581. https://doi.org/10.1214/14-AAP1003