DOI QR코드

DOI QR Code

A Case Study on the Students' Covariational Reasoning in the Continuous Functional Situations

함수적 상황에 대한 초등학생들의 공변추론 사례연구

  • Hur, Joonho (Department of Mathematics Education, Graduate School of Education, Seoul National University of Education) ;
  • Park, Mangoo (Department of Mathematics Education, Seoul National University of Education)
  • Received : 2017.12.25
  • Accepted : 2018.01.28
  • Published : 2018.01.31

Abstract

The purpose of this study is to investigate the effects of cognitive activity on cognitive activities that students imagine and cope with continuously changing quantitative changes in functional tasks represented by linguistic expressions, table of value, and geometric patterns, We identified covariational reasoning levels and investigated the characteristics of students' reasoning process according to the levels of covariational reasoning in the elementary quantitative problem situations. Participants were seven 4th grade elementary students using the questionnaires. The selected students were given study materials. We observed the students' activity sheets and conducted in-depth interviews. As a result of the study, the students' covariational reasoning level for two quantities that are continuously covaried was found to be five, and different reasoning process was shown in quantitative problem situations according to students' covariational reasoning levels. In particular, students with low covariational level had difficulty in grasping the two variables and solved the problem mainly by using the table of value, while the students with the level of chunky and smooth continuous covariation were different from those who considered the flow of time variables. Based on the results of the study, we suggested that various problems related with continuous covariation should be provided and the meanings of the tasks should be analyzed by the teachers.

본 연구의 목적은 초등학교 4학년 학생들이 그래프가 아닌 언어적 표현이나 대응표, 기하학적 패턴 등으로 표현된 함수 과제에서 연속적으로 변하고 있는 두 양의 변화에 대한 공변추론 수준을 파악하고 공변추론 수준 및 추론 과정에 나타나는 특징을 분석하는 것이다. 연구 참여자들은 검사지를 통해 선정된 초등학교 4학년 학생 7명이며, 선정된 학생들의 학습지 분석 및 면담을 실시하였다. 연구 결과 학생들의 공변추론 수준은 5가지로 파악되었으며, 공변추론 수준에 따라 양적 문제 상황에서 다른 추론과정을 보였다. 특히, 공변추론 수준이 낮은 학생들은 두 변수의 파악에 어려움을 가지고 있었고 대응표를 중심으로 문제를 해결한 반면, 연속공변 수준의 학생들은 시간 변수의 흐름을 생각할 수 있다는 차이가 있었다. 연구 결과로부터 공변추론 관련 다양한 과제의 제시와 각 과제의 의미에 대한 교사들의 탐구가 필요함 등을 시사점으로 제시하였다.

Keywords

References

  1. 교육부(2015). 고시 제2015-74호 [별책 8호] 수학과교육과정.(The Ministry of Education (2015). 2015 Revisedmathematics curriculum. The Ministry of Education Notice 2015-74.)
  2. 김정원, 방정숙(2008). 초등학교 3학년 학생들의 함수적 사고 분석. 한국수학교육학회지 시리즈 C , 11(2), 105-119.(Kim, J. W. & Pang, J. S. (2008). An analysis of third graders' functional thinking. Journal of the KoreanSociety of Mathematical Education Series C : Education of Primary School Mathematics, 11(2), 105-119.)
  3. 김채연, 신재홍(2016). 연속적으로 공변하는 두 양에 대한 추론의 차이가 문제 해결에 미치는 영향. 한국수학교육학회지 시리즈 A, 55(3), 251-279.(Kim, C. Y. & Shin, J. H. (2016). How does the middle school students' covariational reasoning affect their problem solving. Journal of the Korean Society of Mathematical Education Series A: The Mathematical Education, 55(3), 251-279.)
  4. 박종희, 신재홍, 이수진, 마민영(2017). 그래프 유형에 따른 두 공변 추론 수준이론의 적용 및 비교. 수학교육학연구, 27(1), 23-49.(Park, J. H., Shin, J. H., Lee, S. J., & Ma, M. Y. (2017). Analyzing students' works with quantitative and qualitative graphs using two frameworks of covariational reasoning. Journal of EducationalResearch in Mathematics, 27(1), 23-49.)
  5. 방정숙, 최인영. (2016). 초등학교 3학년 학생들의 대수적 사고에 대한 실태 분석. 한국수학교육학회지시리즈 C, 19(3), 223-247.(Pang, J. S. & Choi, I. Y. (2016). An analysis of algebraic thinking by third graders. Journal of the Korean Society of Mathematical Education Series C: Education of Primary School Mathematics, 19(3),223-247.)
  6. 송윤오(2016). Algebra Applet을 활용한 교수실험에서 초등학생들의 공변 추론 수준 분석, 석사학위논문, 한국교원대학교.(Song, Y. O. (2016). An analysis of elementary students' covariational reasoning level in teaching experiment using algebra applet. Master's thesis at KNUE.)
  7. 우정호, 김성준. (2007). 대수의 사고 요소 분석 및 학습-지도 방안의 탐색. 수학교육학연구, 17(4), 453-475.(Woo, J. H. & Kim, S. J. (2007). Analysis of the algebraic thinking factors and search for the direction of itslearning and teaching. Journal of Educational Research in Mathematics, 17(4), 453-475.)
  8. 우정호(2007). 학교수학의 교육적 기초. 서울: 서울대출판부.(Wu, J. H. (2007). An educational foundation ofschool mathematics. Seoul: SNU.)
  9. 전형옥, 이경화, 방정숙. (2009). 초등학교 6학년 학생의 양적 추론 사례 연구. 수학교육학연구, 19(1), 81-98.(Jeon, H. O., Lee, K. H., & Pang, J. S. (2009). Case study of the sixth grade students' quantitative reasoning.Journal of Educational Research in Mathematics, 19(1), 81-98.)
  10. 최지영, 방정숙. (2012). 초등학교 2, 4, 6학년 학생들의 함수적 관계 이해 실태 조사. 학교 수학, 14(3), 275-296.(Choi, J, Y. & Pang, J. S. (2012). An analysis of elementary school students' understanding of functionalrelationships. Journal of Educational Research in Mathematics, 14(3), 275-296.)
  11. Blanton, M. & Kaput, J. J. (2011). Functional thinking as a route into algebra in the elementary grade. In J. Cai & E. Knuth (Eds.), Early algebraization (pp. 5-23). Berlin. Heidelberg: Springer.
  12. Blanton, M., Levi, L., Crites, T., Dougherty, B., & Zbiek, R. M. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. Reston, VA: National Council of Teachers of Mathematics.
  13. Blanton, M., Stephens, A., Knuth, E., Gardiner, A.M., Isler, I., & Kim, J. S. (2015). The development of children's algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39-87. https://doi.org/10.5951/jresematheduc.46.1.0039
  14. Brizuela, B. M., Blanton, M., Sawrey, K., Newman-Owens, A., & Gardiner, M. A. (2015). Children's use of variables and variable notation to represent their algebraic ideas. Mathematical Thinking and Learning, 17(1), 34-63. Mahwah, NJ: Lawrence Erlbaum Associates. https://doi.org/10.1080/10986065.2015.981939
  15. Carlson, M. P. (1998). A cross-sectional investigation of the development of the function concept. In J. J. Kaput, A. H. Schoenfeld, & E. Dubinsky (Eds.), Research in collegiate mathematics education, 3, CBMS issues in mathematics education (Vol. 7, pp. 114-162). Washington DC: Mathematical Association of America.
  16. Carlson, M., Jacobs, S., Coe, E., Larsen, S., & Hsu, E. (2002). Applying covariational reasoning while modeling dynamic events: A framework and a study. Journal for Research in Mathematics Education, 33(5), 352-379. https://doi.org/10.2307/4149958
  17. Carraher, D. W. & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester Jr (Ed.), Second handbook of research on mathematics teaching and learning (pp. 669-705). Charlotte, N.C.: Information Age.
  18. Castillo-Garsow, C. C. (2012). Continuous quantitative reasoning. In R. Mwyes, R. Bonillia, L. L. Hatfield, & S. Belbase (Eds.), Quantitative reasoning: Current state of understanding, WISDOMe Monographs (Vol. 2, pp. 55-73). Laramie: University of Wyoming.
  19. Chazan, D. (2000). Beyond formulas in mathematics and teaching: Dynamics of the high school algebra classroom. NY: Teachers College Press.
  20. Cooney, T, P., Beckmann, S., Gwendolyn, M., & Lloyd, G. M. (2010). Developing essential understanding of functions for teaching mathematics in grades 9-12. Reston, VA: National Council of Teachers of Mathematics.
  21. Confrey, J. & Smith, E. (1994). Exponential functions, rate of change, and the multiplicative unit. Educational Studies in Mathematics, 26, 135-164. https://doi.org/10.1007/BF01273661
  22. Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher & M. L. Blanton (Eds.), Algebra in the early grades (pp. 235-272). New York: Lawrence Erlbaum Associates.
  23. Saldanha, L. & Thompson, P. W. (1998). Re-thinking co-variation from a quantitative perspective: Simultaneous continuous variation. In S. B. Berenson & W. N. Coulombe (Eds.), Proceedings of the annual meeting of the psychology of mathematics education-north america (Vol. 1, pp. 298-304). Raleigh, NC: North Carolina State University. Retrieved on November 1, 2017 from http://bit.1y/1b4sjQE
  24. Smith, J. & Thompson, P. W. (2008). Quantitative reasoning and the development of algebraic reasoning. In J. Kaput, D. W. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 95-132). New York: Lawrence Erlbaum Associates.
  25. Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Cahmberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education, WISDOMe Monographs (Vol. 1, pp. 33-57). Laramie, WY: University of Wyoming.
  26. Thompson, P. W. (2016). Researching mathematical meanings for teaching. In L. English & D. Kirshner (Eds.), Third handbook of international research in mathematics education (pp. 435-461). New York, NY: Taylor & Francis.
  27. Thompson, P. W. & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways of thinking mathematically. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 421-456). National Council of Teachers of Mathematics