DOI QR코드

DOI QR Code

Effect of Underground Building for the Groundwater flow in the Ground Excavation

지반굴착에 따른 지반 안정성 평가 시 지하시설물이 지하수흐름에 미치는 영향 분석

  • 차장환 ((주)신우엔지니어링 융합기술연구소) ;
  • 이재영 ((주)신우엔지니어링 융합기술연구소) ;
  • 김병찬 ((주)베이시스소프트 건설IT연구소)
  • Received : 2018.12.03
  • Accepted : 2018.12.28
  • Published : 2018.12.31

Abstract

The purpose of this study is to investigate the effect of underground facilities around excavation zone on groundwater flow characteristics during excavation. The scenarios were constructed considering the size of the underground facility, the separation distance, and the hydraulic gradient. As a result, as the size of the underground facility increases, the difference of head and the hydraulic gradient become large. The shorter the separation distance of underground facility is, the more the difference of head and the hydraulic gradient occur. The effect of hydraulic gradient on model area was relatively small. As a result of analysis of groundwater flow rate for the scenario, groundwater flow rate tends to decrease as the size of underground facility increases or groundwater flow rate tends to decrease as the separation distance decreases. It is necessary to examine the effect of underground facilities on the groundwater flow analysis in the ground excavation.

본 연구에서는 지반굴착 시 굴착구간 주변의 지하시설물이 지하수 흐름특성에 미치는 영향을 파악하기 위해 지하시설물의 규모와 이격거리, 지하수 동수구배 등을 고려하여 시나리오 기반으로 굴착 단계별 지하시설물의 영향을 지하수 수위 변화와 지하수 유출량 측면에서 비교 분석하였다. 그 결과 지하시설물의 규모가 증가할수록 수두차와 수두구배가 크게 발생하며 이격거리가 짧을수록 큰 수두차와 수두구배를 보인다. 모델영역의 지하수 수두구배에 따른 영향은 비교적 작은 것으로 나타났다. 또한 시나리오에 대한 지하수 유출량 분석 결과 지하시설물의 규모가 증가하거나 이격거리가 짧을수록 지하수 유출량이 감소하는 경향을 보인다. 이는 지반굴착에 따른 지하수 유동특성 분석에 있어 주변에 존재하는 지하시설물에 대한 영향 검토가 필요한 것으로 판단된다.

Keywords

HKBJBA_2018_v11n2_17_f0001.png 이미지

Fig. 1. Model grid domain and geology, boundary conditions; (a) 3D model domain and (b) vertical cross-section of model domain.

HKBJBA_2018_v11n2_17_f0002.png 이미지

Fig. 2. Excavation simulations according to the scenario of underground facilities (or barrier) locations; (a) separation distances and (b) barrier sizes.

HKBJBA_2018_v11n2_17_f0003.png 이미지

Fig. 3. A distribution of groundwater level for a general 1; (a), (d) 1st step (30day) and (b), (e) 2nd step (60day), (c), (d) 3rd step (90day).

HKBJBA_2018_v11n2_17_f0004.png 이미지

Fig. 4. A distribution of groundwater level for a Case 1-2; (a), (d) 1st step (30day) and (b), (e) 2nd step (60day), (c), (d) 3rd step (90day).

HKBJBA_2018_v11n2_17_f0005.png 이미지

Fig. 5. A comparison of groundwater distribution according to a scenario for a 3rd steps; (a) separation distance effect (General 1 and Case 1-2, Case 1-4) and (b) barrier size effect (General 1 and Case 1-2, Case 4-2).

HKBJBA_2018_v11n2_17_f0006.png 이미지

Fig. 6. The results of simulation according to a scenario for a barrier sizes; (a), (d) difference of head and (b), (e) hydraulic gradient, (c), (d) hydraulic gradient ratio.

HKBJBA_2018_v11n2_17_f0007.png 이미지

Fig. 7. The results of simulation according to a scenario for a separation distances; (a), (d) difference of head and (b), (e)hydraulic gradient, (c), (d) hydraulic gradient ratio.

HKBJBA_2018_v11n2_17_f0008.png 이미지

Fig. 8. The result of simulation according to a scenario for a hydraulic gradient (dh/L) of model; (a), (d) difference of head and(b), (e) hydraulic gradient, (c), (f) hydraulic gradient ratio.

HKBJBA_2018_v11n2_17_f0009.png 이미지

Fig. 9. The result of groundwater discharge rate and ratio according to a separation distance; (a), (b), (c) discharge rate of daily and (e), (f), (g) ratio of discharge rate.

HKBJBA_2018_v11n2_17_f0010.png 이미지

Fig. 10. The result of groundwater discharge rate and ratio according to a barrier size; (a), (b), (c) discharge rate of daily and(e), (f), (g) ratio of discharge rate.

HKBJBA_2018_v11n2_17_f0011.png 이미지

Fig. 11. The result of groundwater discharge rate and ratio according to a scenario; (a), (b), (c) discharge rate of daily and (e),(f), (g) ratio of discharge rate.

Table 1. Aquifer parameters

HKBJBA_2018_v11n2_17_t0001.png 이미지

Table 2. The ground excavation schedules

HKBJBA_2018_v11n2_17_t0002.png 이미지

Table 3. The scenario list according to separation distance and barrier (or facilities) size, hydraulic gradient

HKBJBA_2018_v11n2_17_t0003.png 이미지

References

  1. Chung, J., Lee, S., Lee, G., Jung, H., and Kim, H. (2015). A Case Study on the Effects on Underground Structure due to Changes in the Groundwater Level and Ground Stress. Journal of the Korean Geo-Environmental Society. 16(9): 13-21.
  2. Han, K.-C., Cheon, D.-S., Ryu, D.-W., and Park, S.-G. (2006). Analysis of Ground Subsidence on Gyochon Residential Region of Muan City. TUNNEL & UNDERGROUND SPACE. 17(1): 66-74.
  3. Jeon, S.-K., Koo, M.-H., Kim, Y., and Kang, I.-O. (2005). Statistical Analysis of Aquifer Characteristics Using Pumping Test Data of National Groundwater Monitoring Wells for Korea. Journal of the Korean Society of Groundwater Environment. 10(6): 32-44.
  4. Kim, S. and Kwansue, J. (2018). Experimental Study on Influence of Ground Collapse due to Ground Water Level Lowering. Journal of the Korean Geoenvironmental Society. 19(11): 23-30. https://doi.org/10.14481/JKGES.2018.19.11.23
  5. Morris, D. A. and Johnson, A. I. (1967). Summary of Hydrologic and Physical Properties of Rock and Soil Materials, as Analyzed by the Hydrologic Laboratory of the U.S. Geological Survey, 1948-1960. USGS Water Supply Paper: 1839-D.
  6. Domenico, P. A. (1972). Concepts and Models in Groundwater Hydrology. McGraw-Hill.: 405.
  7. Song, J.-S., Abbas, Q., and Yoo, C.-S. (2018). Effect of Ground Water Table on Deep Excavation Performance. Journal of the Korean Geosynthetics Society. 17(3): 33-46. https://doi.org/10.12814/JKGSS.2018.17.3.033