DOI QR코드

DOI QR Code

A study on the change effect of emission regulation mode on vehicle emission gas

배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구

  • Lee, Min-Ho (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Kim, Ki-Ho (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority) ;
  • Lee, Joung-Min (Research Institute of Petroleum Technology, Korea Petroleum Quality & Distribution Authority)
  • 이민호 (한국석유관리원 석유기술연구소) ;
  • 김기호 (한국석유관리원 석유기술연구소) ;
  • 이정민 (한국석유관리원 석유기술연구소)
  • Received : 2018.09.28
  • Accepted : 2018.12.21
  • Published : 2018.12.31

Abstract

As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.

대기오염에 대한 관심은 국내 외에서 점진적으로 상승하고 있으며, 자동차 및 연료 연구자들은 청정(친환경 대체연료) 연료와 연료품질 향상 등을 위해 새로운 엔진 설계, 혁신적인 후 처리 시스템 등의 많은 접근을 통하여 차량 배출가스와 온실가스를 감소시키려고 노력하고 있다. 이러한 연구들은 주로 차량의 배출가스 (규제 및 미규제물질, PM 입자 배출 등)와 온실가스의 두 가지 이슈로 진행되고 있다. 자동차의 배출가스는 환경오염과 인체에 악영향을 주는 많은 문제를 일으키고 있다. 이러한 배출가스를 줄이기 위하여 각국에서는 배출가스 시험모드를 새로 만들어 규제하고 있다. 2007 년부터 UN ECE의 WP.29 포럼에서 배출가스 인증을 위한 전 세계의 조화된 light-duty 차량 시험 절차 (WLTP)가 개발되었다. 이 시험 절차는 유럽과 동시에 국내 light-duty 디젤 차량에도 적용되어졌다. Light-duty 차량의 대기오염 물질 배출량은 거리 당 무게로 규제되어 있어 주행주기가 결과에 영향을 미칠 수 있다. 차량의 배출가스는 주행 및 환경조건, 주행습관 등에 따라 크게 달라진다. 극단적인 외기온도는 배출가스를 증가시키는데, 이것은 더 많은 연료가 실내를 가열하거나 냉각해야하기 때문이다. 또한 높은 주행속도는 증가된 항력을 극복하기 위해 필요한 에너지로 인해 배출가스 량을 증가시킨다. 일반적으로 상승하는 차량속도와 비교할 때, 급격한 차량가속도도 배출가스를 증가시킨다. 부가적인 장치 (에어컨 또는 히터)와 도로경사 또한 배출가스를 증가시킨다. 본 연구에서는 3대의 light-duty 차량을 가지고 light-duty 차량의 배출가스 규제에 사용되는 WLTP, NEDC 및 FTP-75로 시험을 하였으며, 배출가스가 다른 주행 사이클에 의해 얼마나 많은 영향을 받을 수 있는지를 측정하였다. 배출 가스는 통계적으로 의미있는 차이를 보이지 않았다. 최대 배출 가스는 주로 냉각 된 엔진 조건에 의해 야기되는 WLTP의 저속 단계에서 발견된다. 냉각 된 엔진 상태에서 배출가스의 양은 시험 차량과 크게 다르다. 이는 WLTP 구동 사이클에 대처하기 위해 다른 기술적 솔루션이 필요하다는 것을 의미한다.

Keywords

HGOHBI_2018_v35n4_1108_f0001.png 이미지

Fig. 2. Engine load characteristics of 3-type vehicle according to the test mode. (Vehicle speed, Engine revolution, Intake pressure, Fuel injection rate)

HGOHBI_2018_v35n4_1108_f0002.png 이미지

Fig. 3. Exhaust emissions of 3-type vehicle according to the test mode.

HGOHBI_2018_v35n4_1108_f0003.png 이미지

Fig. 4. Exhaust emissions of 3-type vehicle according to the regulation test mode.

HGOHBI_2018_v35n4_1108_f0004.png 이미지

Fig. 5. Exhaust emissions of 3-type vehicle according to the test temperature in WLTP mode.

HGOHBI_2018_v35n4_1108_f0005.png 이미지

Fig. 5. PM emission of 3-type diesel vehicle according to the test temperature in NEDC mode.

HGOHBI_2018_v35n4_1108_f0006.png 이미지

Fig. 6. PM emission of 3-type vehicle according to the test temperature in WLTP mode.

HGOHBI_2018_v35n4_1108_f0007.png 이미지

Fig. 1. Schematic diagram of gasoline vehicle emission measurement system.

Table 1. Specifications of test vehicles

HGOHBI_2018_v35n4_1108_t0001.png 이미지

Table 2. Key features of the five fuel economy test mode

HGOHBI_2018_v35n4_1108_t0002.png 이미지

References

  1. M. D. Eom, J. H. Ryu, J. S. Han, Y. S. Lyu, D. W. Kim, J. C. Kim, "A Study on the VOCs Emission Characteristics by the Light Duty Diesel and LPG Fueled Vehicles", Transactions of KSAE, Vol. 16, No. 1, pp. 8-13, (2008).
  2. D. I. Kang, J. C. Yi, J. Y. Choi, J. Y. Kim, Y. S. Lim, J. T. Lee, C. Y. Seo, J. S. Kim, "A study on the setting of Motor Vehicle Greenhouse Gas Emission Standards", KSAE 2011 Annual conference, KSAE11-B0123, (2011).
  3. D. S. Kim, J. W. Lee, J. Y. Lee, S. H. Lee, S. H. Lee, J. Y. Lee, Y. W. Lee, H. M. Choi, K. D. Min, "A study on the characteristics of PM size distribution and number of particulate matters during DPF regeneration in a HSDI Diesel engine", KSAE 2012 Annual conference, KSAE12-A0016, (2012).
  4. E. J. Kang, M. S. Chon, J. S. Um, K. H. Kim, Y. H. Seo, "Characteristics Evaluation of Fuel Economy and Emission according to Driving Mode Conditions of The Vehicle by Fuel Type", KSAE 2015 Annual conference, KSAE15-B0077, (2015).
  5. J. Y. Jang, Y. J. Lee, O. S. Kwon, "The Characteristics of Emission on Diesel Vehicle Using Low-SAPS and High-SAPS Engine Oil", KSAE 2016 Annual conference, KSAE16-F0497, (2016).
  6. G. W. Kang, J. T. Lee, J. H. Park, J. P. Cha, M. S. Chon, "Development of Korean RDE Routes for On-road Emissions Measurement of Light Duty Vehicles", Transactions of KSAE, Vol. 25, No. 3, pp. 287-296, (2017). https://doi.org/10.7467/KSAE.2017.25.3.287
  7. J. Louis, "Well-to-Wheel Energy Use and Greenhouse Gas Emissions for Various Vehicle Technologies", SAE Technical Paper, No.2001-01-1343, (2001).
  8. T. Austin, T. Carlson and J. Lyons, "The Benefits of Reducing Fuel Consumption and Greenhouse Gas Emissions from Light-Duty Vehicles", SAE International Journal of Engine, Vol. 1, Issue 1, pp. 480-490, (2009) (SAE Technical Papaer No.2008-01-0684).
  9. D. I. Kang, T. Y. Moon, S. E. Lee, C. Y. H. Y. Seo, J. S. Kim, "A study of greenhouse gas emission rate from LPG vehicles according to driving cycles", KSAE 2011 Annual conference, KSAE11-A0111, (2011).
  10. S. E. Lee, J. Y. Kim, T. Y. Moon, J. H. Son, H. K. Hong, H. J. Yun, T. R. Gwon, J. S. Kim, "A study of greenhouse gas emission rate from Gasoline vehicles according to driving cycles", KSAE 2013 Annual conference, KSAE13-B0139, (2013).