DOI QR코드

DOI QR Code

Application and Type of Magnetic Separator

자력선별장비의 유형과 활용

  • Lee, Sang-hun (Dept. of Environmental Science, Keimyung University) ;
  • Yang, Injae (Institute of Mine Reclamation Tech., Mine Reclamation Corp.) ;
  • Choi, Seungjin (Institute of Mine Reclamation Tech., Mine Reclamation Corp.) ;
  • Park, Jayhyun (Institute of Mine Reclamation Tech., Mine Reclamation Corp.)
  • 이상훈 (계명대학교 환경학부 환경과학전공) ;
  • 양인재 (한국광해관리공단 광해기술원) ;
  • 최승진 (한국광해관리공단 광해기술원) ;
  • 박제현 (한국광해관리공단 광해기술원)
  • Received : 2018.10.23
  • Accepted : 2018.11.27
  • Published : 2018.12.28

Abstract

Magnetic separators has been used in the mining and the recycling fields in general, and is still applied in wide variety of fields. It is classified into the equipments for separating coarse ferrous scrap from non-ferrous materials and the equipments for concentrating fine ferromagnetic particles below 3mm. Magnetic separation equipments for concentrating fine materials also falls into two categories of low intensity and high intensity magnetic separators. The former is used for ferromagnetic materials but also paramagnetic materials of high magnetic susceptibility, and the latter for paramagnetic materials of lower magnetic susceptibility. Both low and high intensity magnetic separators could be utilized either dry and wet. Recently, the High gradient magnetic separators(HGMS) used in the range of less than 0.7 tesla has been gradually replaced by the magnetic separator made of rare earth permanent magnets commercialized in the 1980s. In addition, the expansion of nanotechnology in terms of synthetic magnetic materials in the environmental and biological fields is expected to contribute positively to the development of magnetic separation technology.

자력선별장비는 일반적으로 광산업 및 재활용 분야에서 사용되어 왔으며, 다양한 분야에서 폭넓게 활용되고 있다. 자력선별장비는 비철재료로부터 철 스크랩 분리를 위한 조립자용 선별장비와 3 mm 이하 미립 강자성체를 농축하기 위한 미립자용 선별장비로 구분된다. 또한 미립자용 선별장비는 저자력 선별장비와 고자력 선별장비로 세분된다. 저자력 선별장비는 강자성체나 높은 자화율의 상자성체를 분리하는데 사용되고, 고자력선별장비는 낮은 자화율의 상자성체를 분리하는데 사용된다. 저자력 및 고자력 선별장비 모두 습식과 건식으로 활용된다. 최근 0.7 Tesla미만 영역에서 활용되는 전자석 고구배자력선별장비는 1980년대 이후 상용화된 희토류 영구자석으로 제조된 자력선별장비로 점진적으로 대체되는 추세이며, 환경분야와 생물분야에서 합성자성물질과 관련된 나노기술의 확대는 향 후 자력선별기술의 발전에 긍정적으로 기여할 것으로 기대된다.

Keywords

RSOCB3_2018_v27n6_11_f0001.png 이미지

Fig. 1. Typical Magnetisation curves of Ferromagnetic (magnetite), Paramagnetic (hematite) and Diamagnetic (Quartz) materials (redrawn from Lawver and Hopstock, 1974).

RSOCB3_2018_v27n6_11_f0002.png 이미지

Fig. 2. Concept of forces acted on particle contained ferromagnetic material.

RSOCB3_2018_v27n6_11_f0003.png 이미지

Fig. 3. Suspended electromagnetic separators for tramp metal collection.

RSOCB3_2018_v27n6_11_f0004.png 이미지

Fig. 4. Types of permanent magnetic separator for tramp metal collection.

RSOCB3_2018_v27n6_11_f0005.png 이미지

Fig. 6. Wet low intensity drum magnetic separators (redrawn from David & Michael, 2002).

RSOCB3_2018_v27n6_11_f0006.png 이미지

Fig. 5. Dry low intensity drum magnetic separator.

RSOCB3_2018_v27n6_11_f0007.png 이미지

Fig. 7. Movements of particles in wet drum magnetic separators.

RSOCB3_2018_v27n6_11_f0008.png 이미지

Fig. 8. Concept of Wetherill-Rowand (or Cross belt) magnetic separator.

RSOCB3_2018_v27n6_11_f0009.png 이미지

Fig. 9. Concept of Induced roll magnetic separator.

RSOCB3_2018_v27n6_11_f0010.png 이미지

Fig. 10. Batch wet high gradient magnetic separator.

RSOCB3_2018_v27n6_11_f0011.png 이미지

Fig. 11. Continuous wet high intensity magnetic separator.

RSOCB3_2018_v27n6_11_f0012.png 이미지

Fig. 12. Schematic representation of Vortex Magnetic Separator (VMS).

RSOCB3_2018_v27n6_11_f0013.png 이미지

Fig. 13. Metal matrix types held in WHIMS and SLON HGMS.

RSOCB3_2018_v27n6_11_f0014.png 이미지

Fig. 14. Concept of Rare earth drum magnetic separator.

References

  1. Kim, J. M., Kim, C. W., and Suk, H. G., 2014 : A study on the evaluation of mechanical characteristics of iron ores, J. Korean Inst. Resources Recycling, 23(4), pp.12-20. https://doi.org/10.7844/kirr.2014.23.4.12
  2. Ban, B. C., Yu, S. N., and Kim, D. S., 2003 : Studies of the recovery of iron contents from iron and steel-making slags by magnetic separation, J. Korean Inst. Resources Recycling, 12(5), pp.36-41.
  3. Park, J., Choi, U., Choi, H., and Shin, S., 2015 : Cahracteristic of flotation for recovery of copper from copper slag in Kazakhstan, J. Korean Inst. Resources Recycling, 24(4), pp.12-21. https://doi.org/10.7844/kirr.2015.24.4.12
  4. Park, J. T., Kang, J. K., Sohn, J. S., Yang, D. H., and Shin, S. M., 2006 : Physical Treatment for Recycling Commercialization of Spent Household Batteries, J. Korean Inst. Resources Recycling, 15(6), pp.48-55.
  5. Hyun, J. Y., Chae, Y. B., and Jeong, S. B., 2002 : A Study on the Physical Separation Characteristics of Valuable Metals from the Waste Printed Wiring Boards, J. Korean Inst. Resources Recycling, 11(1), pp.9-18.
  6. Choi, W. Z., and Yoo, J. M., 2007 : Removal of PVC from mixed plaastic waste by Combination of air classification and centrifugal process, J. Korean Inst. Resources Recycling, 16(5), pp.71-76.
  7. Lawver, J. E., and Hopstock, D. M., 1974 : Wet magnetic separation of weakely magnetic minerals, Minerals Sci. Eng., 6, pp.154-172.
  8. Gareth, P. H., and Richard, E. S., 2001 : Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation (HGMS) systems, J. Magnetism and Magnetic Mater., 225, pp.262-276. https://doi.org/10.1016/S0304-8853(00)01250-6
  9. Carlos, M., Carolina, C., Alberto, M., Alfonso, G., and Mercedes, G., 2015 : Magnetic Sensors Based on Amorphous Ferromagnetic Materials: A Review, Sensors, 15(11), 28340-28366; doi:10.3390/s151128340
  10. Daiki, S., and Kotaro, O., 2017, Magnetic fluid seal, US Patent 9816616B2.
  11. Kazuhiko, S., 2015, Magnetic fluid seal, US Patent 20180306246A1.
  12. Benjamin, S., Sandip, K., Aleksander, N., Silvia, M., Pavel, Y. S., and Irving, N. W., 2015 : Open challenges in magnetic drug targeting, Wires Nanomedicine & Nanobiotech., 7(3), pp.446-457. https://doi.org/10.1002/wnan.1311
  13. Kheireddine, E. B., 2018 : Magnetic iron oxide nanoparticles as drug carriers:preparation, conjuation and delivery, Nanomedicine, 13(8), pp.929-952. https://doi.org/10.2217/nnm-2017-0320
  14. Ghanem, A., Young, J., and Edwards, F., 2013 : Settling velocity models applied to ballsted flocs-A review. SABER. Revista Multidisciplnaria del Consejo de Investigation de la Universidad de Oriente, 25(3), pp.247-253.
  15. Lee, J., Park, S., and Kim, J., 2017 : Characteristics of high turbidity material removal using magnetic based ballasts, Proc. Korean Geo-Environ. Soc., pp.77-78, Sep 2007, Printed in Korea.
  16. Svoboda, J., and Fujita, T., 2003 : Recent developments in magnetic methods of material separation, Mineral Eng., 16, pp.785-792. https://doi.org/10.1016/S0892-6875(03)00212-7
  17. Anders, S., Jan, F. S., Martti, O. T., Johan, E. C., and Bertil, I. P., 2016 : A stokesian dynamics approach for simulation of magnetic particle suspensions, Mineral Eng., 90, pp.70-76. https://doi.org/10.1016/j.mineng.2015.10.015
  18. David, A. N., and Michael, J. M., 2002 : Selection and sizing of magnetic concentrating equipment; Plant design/layout, Mineral Processing Plant Design, Practice, and Control Proceedings, v.1-2, Edited by Andrew L.M. Doug N.H., and Derek J. B., pp.1069-1093, Society for Mining, Metallurgy, and Exploration, Inc., Littleton.
  19. 911 metallurgist, 2017, Wet high intesity magnetic separation, (https://www.911metallurgist.com/whim-wet-high-intensity-magnetic/)
  20. Bikbov, M. A., Karmazin, V. V., and Bikbov, A. A., 2004 : Low intensity magnetic separation-Principal stages of a separator development-what is the next step?, Physical Separation in Science and Eng. pp.53-67.
  21. Dobbins, M., Dunn, P., and Sherrell, I., 2009 : Recent advances in magnetic separator designs and applications, The 7th International Heavy Minerals Conference 'What next', The Southern African Institute of Mining and Metallurgy, pp.63-69.
  22. Errol, G. K., and David, J. S., 1982 : Introduction to mineral processing, pp.274-277, 2nd Edition, John Wiley & Sons, New York.
  23. David, 2018 : Magnetic separators for weakely low magnetic minerals, (https://www.911metallurgist.com/electromagnetic-separators-weakly-low-magnetic-minerals/).
  24. Melville, D., Paul, F., and Roath, S., 1975 : High gradient magnetic separation of red cells from whole blood, IEEE Transactions on Magnetics, 11(6), pp.1701-1704. https://doi.org/10.1109/TMAG.1975.1058970
  25. Owen, C. S., 1978 : High gradient magnetic separation of erythrocytes, Biophys. J., 22(2), pp.171-178. https://doi.org/10.1016/S0006-3495(78)85482-4
  26. Liu, G., She, Y., Hong, S., Wang, J., and Xu, D., 2018 : Development of ELISA-Like Fluorescence Assay for Melamine Detection Based on Magnetic Dummy Molecularly Imprinted Polymers, Applied Sciences 8(4), pp.560-572. https://doi.org/10.3390/app8040560
  27. Andreas, R., Birgit, M., Andreas, T., Stefan, M., and Eckhard, P., 1994 : Chapter 23 High-Gradient Magnetic Cell Sorting, Methods in Cell Biology, 42, pp.387-403.
  28. David, W. I., Robert, R., James, C. S., and Robert, H. A., 2006 : Microfluidic high gradient magnetic cell separation, J. Applied Physics, 99, 08k101. https://doi.org/10.1063/1.2165782
  29. James, A. R., Armin, D. E., Karen, D. D., and Krystle, L. S., 2004 : Application of high gradient magnetic separation principles to magnetic drug targeting, Journal of Magnetism and Magnetic Materials, 280(2-3) pp.184-201. https://doi.org/10.1016/j.jmmm.2004.03.012
  30. Martin, C., Michael, M., Robert, D., Aymee, M., Katharina, M., and Clemens, P., 2012: Harvesting fresh water and marine algae by magnetic separation: Screening of separation parameters and high gradient magnetic filtration, Bioresource Technology, 118, pp.289-295. https://doi.org/10.1016/j.biortech.2012.05.020
  31. Nuray, K., 2003 : Magnetic separation of ferrihydrite from wastewater by magnetic seeding and high-gradient magnetic separation, International J. Mineral Processing, 71(1- 4), pp.45-54. https://doi.org/10.1016/S0301-7516(03)00029-2
  32. Ahamad, M. H. S., and Sharad, G. D., 1992 : Removal of phosphate from waters by precipitation and high gradient magnetic separation, Water Research, 26(6), pp.845-852. https://doi.org/10.1016/0043-1354(92)90016-W
  33. Kakihara, Y., Fukunishi, T., Takeda, S., Nishijima, S., and Nakahira, A., 2004 : Superconducting high gradient magnetic separation for purification of wastewater from paper factory, IEEE Transactions on Applied Superconductivity, 14(2), pp.1565-1567. https://doi.org/10.1109/TASC.2004.830709
  34. Nishijima, S., and Takeda, S., 2006 : Superconducting high gradient magnetic separation for purification of wastewater from paper factory IEEE Transactions on Applied Superconductivity, 16(2), pp.1142-1145. https://doi.org/10.1109/TASC.2006.871346
  35. Frantz, S. G., 1937 : Magnetic separator, US Patent 2,074,085.
  36. Johns, G. H., 1960 : Wet magnetic separator for feebly magnetic minerals., In: Proc. 5th Int. Miner. Proc. Congress, London, pp.717.
  37. Cibulka, J., Zurek, F., Kolar, O., Horacek, M., Hencl, V., Suslikov, G. F., Lomovtsev, L. A., Gramm, V. A., and Davydov Yu. A., 1985 : A new concept of high-gradient magnetic separators, IN: Proc. 15th Int. Miner. Proc. Congress, Cannes, France, p.363.
  38. Xiong, D. H., 1994 : New development of the Slon vertical ring and pulsating HGMS separator, Magnetic and Electrcal Separation. 5(4), pp.211-222. https://doi.org/10.1155/1994/46057
  39. John, O., 2017 : Is There an Optimum Price-Performance Metric for Permanent Magnet Materials?, (http://www.magneticsmag.com/main/is-there-an-optimum-price-performance-metric-for-permanent-magnet-materials/)
  40. Yiran, L., Jun, W., Xiaojun, W., Baoqiang, W., and Zhaokun, L., 2011 : Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation, Physica C: Superconductivity, 471(3-4), pp.91-96. https://doi.org/10.1016/j.physc.2010.12.003
  41. Dworzanowski, M., 2010 : Optimizing the performance of wet drum magnetic separators, J. Sourthern African Institute of Mining and Metallurgy, 110(11), pp.643-653.