DOI QR코드

DOI QR Code

Sonochemical Synthesis of Copper-silver Core-shell Particles for Conductive Paste Application

초음파를 이용한 구리-은 코어-쉘의 합성 및 전도성 페이스트 적용

  • Sim, Sang-Bo (Changsung Nanotech Co., Ltd.) ;
  • Han, Jong-Dae (School of Civil, Environmental and Chemical Engineering, Changwon National University)
  • 심상보 (창성나노텍(주)) ;
  • 한종대 (창원대학교 공과대학 토목환경화공융합공학부)
  • Received : 2018.10.03
  • Accepted : 2018.10.30
  • Published : 2018.12.10

Abstract

Submicron copper-silver core-shell (Cu@Ag) particles were synthesized using the sonochemical combined transmetallation reaction and the application to printed electronics as a low cost conductive paste was evaluated. $Cu_2O$ of the $Cu_2O/Cu$ composite used as a core in the reaction for the synthesis of core-shell was sonochemically reduced to Cu, and Cu atoms functioned as a reducer for silver ions in transmetallation to achieve the copper-silver core-shell structure. The characterization of submicron particles by TEM-EDS and TG-DSC confirmed the core-shell structure. Conductive pastes in which 70 wt% Cu@Ag was dispersed in solvents were prepared using a binder and wetting agents, and coated on the polyamide film using a screen-printing method. Printed paste films containing synthesized Cu@Ag particles with 8 at% and 16 at% Ag exhibited low resistivity of 96.2 and $38.4{\mu}{\Omega}cm$ after sintering at $180^{\circ}C$ in air, respectively.

서브 미크론 구리-은 코어-쉘 Cu@Ag 입자를 초음파화학과 결합된 금속교환 반응으로 합성하고 인쇄용 전자부품을 위한 저렴한 전도성 페이스트 적용을 평가하였다. 코어-쉘의 합성을 위한 반응에서 코어로 사용된 $Cu_2O/Cu$ 복합체의 $Cu_2O$는 초음파화학 반응으로 Cu로 환원되고 Cu 원자는 Ag의 금속교환 반응의 환원제로 작용하여 코어 표면에 Ag가 코팅된 코어-쉘 구조를 얻었다. TEM-EDS와 TG-DSC를 이용하여 서브 미크론 입자의 코어-쉘 구조를 확인하였다. 70 wt% Cu@Ag를 용매에 분산시킨 전도성 페이스트를 결합제와 습윤제를 사용하여 제조하고, 스크린 인쇄법을 사용하여 폴리아미드 필름상에 코팅하였다. Ag 함량이 8 at%와 16 at%인 Cu@Ag 입자를 함유하는 인쇄된 페이스트 필름은 공기 중의 $180^{\circ}C$에서 소결한 후 각각 96.2와 $38.4{\mu}{\Omega}cm$의 낮은 비저항 값을 나타내었다.

Keywords

GOOOB2_2018_v29n6_782_f0001.png 이미지

Figure 1. XRD patterns of (a) Cu2O and (b) Cu@Ag particles with 8 at% Ag.

GOOOB2_2018_v29n6_782_f0002.png 이미지

Figure 3. (a) SEM image and (b) EDS spectrum of Cu@Ag particles.

GOOOB2_2018_v29n6_782_f0003.png 이미지

Figure 5. Line scanning analysis of a representative single Cu@Ag particle of 1.0 μm in size: (a) TEM image, (b) elemental EDS line profiling on the cross-section.

GOOOB2_2018_v29n6_782_f0004.png 이미지

Figure 6. Elemental mapping analysis of a representative single Cu@Ag particle of 1.6 μm in size: (a) TEM image, and (b), (c) EDS mappings of Cu and Ag.

GOOOB2_2018_v29n6_782_f0005.png 이미지

Figure 7. TG-DSC result of Cu@Ag particles with 8 at% Ag under dynamic heating of 5 ℃/ min to 550 ℃ in air.

GOOOB2_2018_v29n6_782_f0006.png 이미지

Figure 8. Resistivity of the film containing Cu@Ag particles with various Ag contents after sintering at 180 ℃ in air.

GOOOB2_2018_v29n6_782_f0007.png 이미지

Figure 9. Resistivity of the film containing Cu@Ag particles with 8 at% Ag after sintering at various temperatures in air.

GOOOB2_2018_v29n6_782_f0008.png 이미지

Figure 2. (a) SEM micrographs and (b) EDS spectrum results of Cu@Ag particles with 8 at% Ag, the insert table is the composition of the particles.

GOOOB2_2018_v29n6_782_f0009.png 이미지

Figure 4. Representative TEM micrographs of (a) Cu2O particles and (b) Cu@Ag particles with 8 at% Ag.

References

  1. A. Pajor-Swierzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Air stable copper-silver core-shell submicron particles: Synthesis and conductive ink formulation, Colloids Surf. A, 521, 272-280 (2017). https://doi.org/10.1016/j.colsurfa.2016.08.026
  2. A. Kamyshny, J. Steinke, and S. Magdassi, Metal-based inkjet inks for printed electronics, Open Appl. Phys. J., 4, 19-36 (2011). https://doi.org/10.2174/1874183501104010019
  3. C. K. Kim, G.-J. Lee, M. K. Lee, and C. K. Rhee, A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics, Powder Technol., 263, 1-6 (2014). https://doi.org/10.1016/j.powtec.2014.04.064
  4. Y.-S. Park, C. Y. An, P. K. Kannan, N. Seo, K. Zhuo, T. K. Yoo, and C.-H. Chung, Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation, Appl. Surf. Sci., 389, 865-873 (2016). https://doi.org/10.1016/j.apsusc.2016.08.008
  5. A. Pajor-Świerzy, Y. Farraj, A. Kamyshny, and S. Magdassi, Effect of carboxylic acids on conductivity of metallic films formed by inks based on copper@silver core-shell particles, Colloids Surf. A, 522, 320-327 (2017). https://doi.org/10.1016/j.colsurfa.2017.03.019
  6. S.-B. Sim, D.-S. Bae, and J.-D. Han, Preparation of silver nanoparticles by chemical reduction-protection method using 1-decanoic acid and tri-n-octylphosphine, and their Application in Electrically Conductive Silver nanopaste, Appl. Chem. Eng., 27(1), 68-73 (2016). https://doi.org/10.14478/ACE.2015.1126
  7. Y.-W. Shin, K.-B. Kim, S.-J. Noh, and S.-Y. Soh, Effects of the particle size and shape of silver nanoparticles on optical and electrical characteristics of the transparent conductive film with a self-assembled network structure, Appl. Chem. Eng., 29(2), 162-167 (2018). https://doi.org/10.14478/ACE.2017.1107
  8. S. Magdassi, M. Grouchko, and A. Kamyshny, Copper nanoparticles for printed electronics: Routes towards achieving oxidation stability, Materials, 3, 4626-4638 (2010). https://doi.org/10.3390/ma3094626
  9. H. Nishikawa, S. Mikami, K. Miyake, A. Aoki, and T. Takemoto, Effects of silver coating covered with copper filler on electrical resistivity of electrically conductive adhesives, Mater. Trans., 51, 1785-1789 (2010). https://doi.org/10.2320/matertrans.MJ201020
  10. C.-H. Tsa, S.-Y. Chen, J.-M. Song, I.-G. Chen, and H.-Y. Lee, Thermal stability of Cu@Ag core-shell nanoparticles, Corros. Sci., 74, 123-129 (2013). https://doi.org/10.1016/j.corsci.2013.04.032
  11. E. B. Choi and J.-H. Lee, Enhancement in electrical conductivity of pastes containing submicron Ag-coated Cu filler with palmitic acid surface modification, Appl. Surf. Sci., 415, 67-74 (2017). https://doi.org/10.1016/j.apsusc.2017.01.006
  12. E. B. Choi and J.-H. Lee, Submicron Ag-coated Cu particles and characterization methods to evaluate their quality, J. Alloys Compd., 689, 952-958 (2016). https://doi.org/10.1016/j.jallcom.2016.08.009
  13. R. Zhang, W. Lin, K. Lawrence, and C. P. Wong, Highly reliable, low cost, isotropically conductive adhesives filled with Ag-coated Cu flakes for electronic packaging applications, Int. J. Adhes. Adhes., 30, 403-407 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
  14. C.-H. Hsiao, W.-T. Kung, J.-M. Song, J.-Y. Chang, and T.-C. Chang, Development of Cu-Ag pastes for high temperature sustainable bonding, Mater. Sci. Eng. A, 684, 500-509 (2017). https://doi.org/10.1016/j.msea.2016.12.084
  15. T.-L. Guo, J.-G. Li, X. Sun, and Y. Sakka, Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules, Mater. Sci. Eng. C, 61, 97-104 (2016). https://doi.org/10.1016/j.msec.2015.12.016
  16. J. H. Bang and K. S. Suslick, Applications of ultrasound to the synthesis of nanostructured materials, Adv. Mater., 22, 1039-1059 (2010). https://doi.org/10.1002/adma.200904093
  17. S. Mosleh, M. R. Rahimi, M. Ghaedi, K. Dashtian, and S. Hajati, Sonochemical-assisted synthesis of CuO/$Cu_2O$/Cu nanoparticles as efficient photocatalyst for simultaneous degradation of pollutant dyes in rotating packed bed reactor: LED illumination and central composite design optimization, Ultrason. Sonochem., 40, 601-610 (2018). https://doi.org/10.1016/j.ultsonch.2017.08.007
  18. M. Heshmat, H. Abdizadeh, and M. R. Golobostanfard, Sonochemical assisted synthesis of ZnO nanostructured thin films prepared by sol-gel method, Procedia Mater. Sci., 11, 486-490 (2015). https://doi.org/10.1016/j.mspro.2015.11.070
  19. B. Huang, X. Hao, H. Zhang, Z. Yang, Z. Ma, H. Li, F. Nie, and H. Huang, Ultrasonic approach to the synthesis of HMX@TATB core-shell microparticles with improved mechanical sensitivity, Ultrason. Sonochem., 21, 1349-1357 (2014). https://doi.org/10.1016/j.ultsonch.2014.02.010
  20. B. Miljevic, F. Hedayat, S. Stevanovic, K. E. Fairfull-Smith, S. E. Bottle, and Z. D. Ristovski, To sonicate or not to sonicate PM filters: Reactive oxygen species generation upon ultrasonic irradiation, Aerosol Sci. Technol., 48, 1276-1284 (2014). https://doi.org/10.1080/02786826.2014.981330
  21. H. Y. Jung and S.-W. Lee, Study on antibacterial activity of Ag nanometal-deposited $TiO_2$ prepared by sonochemical reduction method, Appl. Chem. Eng., 25(1), 84-89 (2014). https://doi.org/10.14478/ACE.2013.1115
  22. H.-R. Park, S.-W. Lee, and I.-S. Yoo, Aging effect on the antimicrobial activity of nanometal (Au, Ag)-titanium dioxide nanocomposites, Appl. Chem. Eng., 23(3), 293-296 (2012).
  23. S. Tao, M. Yang, H. Chen, M. Ren, and G. Chen, Microfluidic synthesis of Ag@$Cu_2O$ core-shell nanoparticles with enhanced photocatalytic activity, J. Colloid Interface Sci., 486, 16-26 (2017). https://doi.org/10.1016/j.jcis.2016.09.051
  24. L. Pan, L. Li, and Y. Chen, Synthesis of Ag/$Cu_2O$ hybrids and their photocatalytic degradation treatment of p-nitrophenol, Micro Nano Lett., 6(12), 1019-1022 (2011). https://doi.org/10.1049/mnl.2011.0593
  25. W. Li, L. Li, Y. Gao, D. Hu, C.-F. Li, H. Zhang, J. Jiu, S. Nagao, and K. Suganuma, Highly conductive copper films based on submicron copper particles/copper complex inks for printed electronics: Microstructure, resistivity, oxidation resistance, and long-term stability, J. Alloys Compd., 732, 240-247 (2018). https://doi.org/10.1016/j.jallcom.2017.10.193
  26. T. Ping, S. Mihua, S. Chengwen, W. Shuaihua, and C. Murong, Enhanced photocatalytic activity of $Cu_2O$/Cu heterogeneous nanoparticles synthesized in aqueous colloidal solutions on degradation of methyl orange, Rare Metal Mater. Eng., 45(9), 2214-2218 (2016). https://doi.org/10.1016/S1875-5372(17)30005-X
  27. S. Dehghanpour, A. Mahmoudi, M. Mirsaeed-Ghazi, N. Bazvand, S. Shadpour, and A. Nemati, $Cu_2O$ microsphere, microspherical composite of $Cu_2O$/Cu nanocrystals and various Cu microcrystals: In situ hydrothermal conversion of Cu-aminodiphosphonate complexes, Powder Technol., 246, 148-156 (2013). https://doi.org/10.1016/j.powtec.2013.04.046
  28. X. Yu, J. Li, T. Shi, C. Cheng, G. Liao, J. Fan, T. Li, and Z. Tang, A green approach of synthesizing of Cu-Ag core-shell nanoparticles and their sintering behavior for printed electronics, J. Alloys Compd., 724, 365-372 (2017). https://doi.org/10.1016/j.jallcom.2017.07.045
  29. H. T. Hai, H. Takamura, and J. Koike, Oxidation behavior of Cu-Ag core-shell particles for solar cell applications, J. Alloys Compd., 564, 71-77 (2013). https://doi.org/10.1016/j.jallcom.2013.02.048
  30. A. Muzikansky, P. Nanikashvili, J. Grinblat, and D. Zitoun, Ag dewetting in Cu@Ag monodisperse core-shell nanoparticles, J. Phys. Chem. C, 117, 3093-3100 (2013).
  31. C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, and H.-Y. Lee, Thermal stability of Cu@ Ag core-shell nanoparticles, Corros. Sci., 74, 123-129 (2013). https://doi.org/10.1016/j.corsci.2013.04.032
  32. S.-S. Chee and J.-H. Lee, Preparation and oxidation behavior of Ag-coated Cu nanoparticles less than 20 nm in size, J. Mater. Chem. C, 2, 5372-5381 (2014). https://doi.org/10.1039/C4TC00509K
  33. M. Grouchko, A. Kamyshny, and S. Magdassi, Formation of air-stable copper-silver core-shell nanoparticles for inkjet printing, J. Mater. Chem., 19, 3057-3062 (2009). https://doi.org/10.1039/b821327e
  34. V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, and E. Fortunato, Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper, Appl. Surf. Sci., 254, 3949-3954 (2008). https://doi.org/10.1016/j.apsusc.2007.12.019
  35. C. H. Lee, E. B. Choi, and J.-H. Lee, Characterization of novel high-speed die attachment method at 225 $^{\circ}C$ using submicrometer Ag-coated Cu particles, Scripta Mater., 150, 7-12 (2018). https://doi.org/10.1016/j.scriptamat.2018.02.029
  36. C. C. Tseng, J. H. Hsieh, S. J. Liu, and W. Wu, Effects of Ag contents and deposition temperatures on the electrical and optical behaviors of Ag-doped $Cu_2O$ thin films, Thin Solid Films, 518, 1407-1410 (2009). https://doi.org/10.1016/j.tsf.2009.09.116

Cited by

  1. 스크린 프린팅을 이용한 PEDOT:PSS/AgNW 기반 전기전도성 스마트 텍스타일의 제조 및 신호전달선으로의 적용 vol.23, pp.4, 2018, https://doi.org/10.5805/sfti.2021.23.4.527