DOI QR코드

DOI QR Code

Antioxidant, Antimicrobial and Cytoprotective Effects of the Extract and Its Fraction Obtained from Rhizomes of Belamcanda chinensis (L.) DC

범부채 뿌리 추출물 및 분획물의 항산화, 항균 및 세포 보호 효과

  • Song, Ba Reum (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Lee, Sang Lae (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Lee, Yun Ju (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Shin, Hyuk Soo (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 송바름 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 이상래 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 이윤주 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 신혁수 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2018.09.04
  • Accepted : 2018.10.15
  • Published : 2018.12.10

Abstract

In this study, we investigated antioxidant, antimicrobial and cytoprotective effects of 50% ethanol extract and ethyl acetate fraction from rhizomes of Belamcanda chinensis (L.) DC. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities ($FSC_{50}$) of the 50% ethanol extract and ethyl acetate fraction were 621.5 and $253.0{\mu}g/mL$, respectively. Total antioxidant capacities ($OSC_{50}$) of the extract and fraction were 13.6 and $3.0{\mu}g/mL$, respectively. Minimum inhibitory concentrations (MIC) of the ethyl acetate fraction for Staphylococcus aureus and Candida albicans were 156, $1,250{\mu}g/mL$, respectively, indicating similar or higher levels of those of using methyl paraben. Cytoprotective effects of the 50% ethanol extract against $^1O_2$-induced cellular damage (${\tau}_{50}$) showed in a dose dependent manner at 4 to $64{\mu}g/mL$. ${\tau}_{50}$ of the 50% ethanol extract, ethyl acetate fraction and (+)-${\alpha}$-tocopherol at $16{\mu}g/mL$ were 36.4, 45.0 and 45.8 min respectively, and the ethyl acetate fraction showed cytoprotective effects similar to (+)-${\alpha}$-tocopherol. In ultraviolet B radiation-induced HaCaT cell damage, the ethyl acetate fraction decreased intracellular reactive oxygen species (ROS) up to 45.9% at $8{\mu}g/mL$. Also in $H_2O_2$-induced HaCaT cell damage, the ethyl acetate fraction significantly increased the cell viability at $0.5{\sim}8.0{\mu}g/mL$. As a result of chemical analyses of the ethyl acetate fraction, the presence of flavonoids and polyphenol such as irisflorentin, irigenin, tectorigenin, resveratrol, iridin and tectoridin were identified. In conclusion, the extract/fraction from rhizomes of B. chinensis can be applied as a natural antioxidant and antimicrobial material to cosmetics.

본 연구에서는 범부채 뿌리 50% 에탄올 추출물 및 에틸아세테이트 분획물을 제조하고 이들의 항산화 및 항균 활성, 세포 보호 효능을 평가하였다. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) 자유라디칼 소거 활성($FSC_{50}$) 측정 결과, 50% 에탄올 추출물은 $621.5{\mu}g/mL$, 에틸아세테이트 분획물은 $253.0{\mu}g/mL$이었다. Luminol 발광법을 이용한 총 항산화능($OSC_{50}$)은 추출물과 분획물에서 각각 13.6 및 $3.0{\mu}g/mL$이었다. 항균 활성 측정에서 Staphylococcus aureus 및 Candida albicans에 대한 에틸아세테이트 분획물의 최소저해농도(minimum inhibitory concentration, MIC)는 각각 156 및 $1,250{\mu}g/mL$으로 나타났으며, 화장품에 사용하는 기존 방부제인 methyl paraben보다 유사하거나 더 높은 활성을 보여주었다. $^1O_2$로 유도된 세포 손상에 대한 보호 효과(${\tau}_{50}$)에서 50% 에탄올 추출물은 $4{\sim}64{\mu}g/mL$ 농도 범위에서 농도 의존적으로 세포 보호 활성을 나타냈다. $16{\mu}g/mL$ 농도에서 50% 에탄올 추출물, 에틸아세테이트 분획물 및 (+)-${\alpha}$-tocopherol의 ${\tau}_{50}$은 각각 36.4, 45.0 및 45.8 min이었으며, 에틸아세테이트 분획물은 $^1O_2$로 유도된 세포 손상에서 (+)-${\alpha}$-tocopherol과 유사한 세포 보호 활성을 나타냈다. UVB로 유도된 HaCaT 세포 손상에서 에틸아세테이트 분획물은 $8{\mu}g/mL$에서 세포 내 활성산소종(reactive oxygen species, ROS)을 최대 45.9%까지 감소시켰다. 과산화수소로 유도된 HaCaT 세포 손상에서도 에틸아세테이트 분획물은 $0.5{\sim}8.0{\mu}g/mL$에서 세포 생존율을 유의적으로 증가시켰다. 범부채 뿌리 에틸아세테이트 분획물의 성분 분석 결과, irisflorentin, irigenin, tectorigenin, resveratrol, iridin 및 tectoridin 등의 플라보노이드 및 폴리페놀 성분이 확인되었다. 결론적으로 범부채 뿌리 추출물 및 분획물은 화장품의 천연 항산화 및 항균 소재로서 적용 가능성이 있음을 시사한다.

Keywords

GOOOB2_2018_v29n6_772_f0001.png 이미지

Figure 1. Preparation of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis.

GOOOB2_2018_v29n6_772_f0002.png 이미지

Figure 2. FSC50 of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis and (+)-α-tocopherol. Data are indicated as mean ± S.D. *p < 0.05 compared with (+)-α-tocopherol.

GOOOB2_2018_v29n6_772_f0003.png 이미지

Figure 3. OSC50 of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis and L-Ascorbic acid in Fe3+-EDTA/H2O2 system by luminol-dependent chemiluminescence assay. Data are indicated as mean ± S.D. *p < 0.05 compared with L-ascorbic acid.

GOOOB2_2018_v29n6_772_f0004.png 이미지

Figure 5. Effects of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis on HaCaT cell viability. HaCaT cells were treated with different concentration of samples for 24 h and cell viability was determined using the MTT assay. Data are presented as mean ± S.D.

GOOOB2_2018_v29n6_772_f0005.png 이미지

Figure 6. Effects of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis on UVB-induced oxidative stress in HaCaT cell. 50% EtOH extracts and EtOAc fraction scavenged UVB-induced upregulation of intracellular ROS production. The H2DCF-DA probe was used to investigate intracellular ROS levels. Data are presented as mean ± S.D. *p < 0.05 compared with UVB treated control in EtOAc fraction groups by one-way ANOVA.

GOOOB2_2018_v29n6_772_f0006.png 이미지

Figure 7. Cell protective effects of 50% ethanol extract and EtOAc fraction from rhizome of B. chinensis on H2O2-induced damaged HaCaT cell. HaCaT cells were treated with different concentration of samples for 2 h before being exposed to oxidative stress. Data are presented as mean ± S.D. *p < 0.05 compared with H2O2 treated control in EtOAc fraction groups by one-way ANOVA.

GOOOB2_2018_v29n6_772_f0007.png 이미지

Figure 8. TLC chromatogram of EtOAc fraction from rhizomes of B. chinensis extract and reference. Eluent system; toluene : chloroform : methanol : formic acid = 1 : 7 : 1 : 1 (v/v), ① ethyl acetate fraction, ② resveratrol.

GOOOB2_2018_v29n6_772_f0008.png 이미지

Figure 9. HPLC chromatogram of the EtOAc fraction from rhizomes of B. chinensis extract at λ = 254~400 nm. 1: tectoridin, 2: iridin, 3: resveratrol, 4: tectorigenin, 5: irigenin, 6: irisflorentin.

GOOOB2_2018_v29n6_772_f0009.png 이미지

Figure 4. Antimicrobial activity of 50% EtOH extract and EtOAc fraction from rhizomes of B. chinensis against bacteria and fungi. A: S. aureus, B: E. coli, C: P. aeruginosa, D: C. albicans, E: A. niger, a: methyl parben (control), b: EtOAc fraction, c: 50% EtOH extract.

Table 1. List of Strains and Cultivation Condition Used for Antimicrobial Experiment

GOOOB2_2018_v29n6_772_t0001.png 이미지

Table 2. TLC Mobile Phase for Separation of EtOAc Fraction from Rhizomes of B. chinensis Extracts

GOOOB2_2018_v29n6_772_t0002.png 이미지

Table 3. HPLC Condition for Separation of EtOAc Fraction from Rhizomes of B. chinensis Extracts

GOOOB2_2018_v29n6_772_t0003.png 이미지

Table 4. Antimicrobial Activity of 50% EtOH Extract and EtOAc Fraction from rhizomes of B. chinensis against Bacteria and Fungi

GOOOB2_2018_v29n6_772_t0004.png 이미지

Table 5. Minimum Inhibitory Concentration (MIC, μg/mL) of 50% EtOH Extract and EtOAc Fraction from Rhizomes of B. chinensis against Bacteria and Fungi

GOOOB2_2018_v29n6_772_t0005.png 이미지

Table 6. Cellular Protective Effects of 50% EtOH Extract and EtOAc Fraction from Rhizomes of B. chinensis and (+)-α-Tocopherol on Rose-bengal Sensitized Photohemolysis of Human Erythrocytes

GOOOB2_2018_v29n6_772_t0006.png 이미지

Table 7. TLC, HPLC, and LC-MS Data of EtOAc Fraction from Rhizomes of B. chinensis Extract

GOOOB2_2018_v29n6_772_t0007.png 이미지

References

  1. M. A. Farage, K. W. Miller, P. Elsner, and H. I. Maibach, Intrinsic and extrinsic factors in skin ageing: A review, Int. J. Cosmet. Sci., 30(2), 87-95 (2008). https://doi.org/10.1111/j.1468-2494.2007.00415.x
  2. M. A. Farage and K. W. Miller, Structural characteristics of the aging skin: a review, Cutan. Ocul. Toxicol., 26(4), 343-357 (2007). https://doi.org/10.1080/15569520701622951
  3. Th. Herrling, K. Jung, and J. Fuchs, Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin, Spectrochim. Acta. A, 63(4), 840-845 (2006). https://doi.org/10.1016/j.saa.2005.10.013
  4. H. U. Simon, A. Haj-Yehia, and F. Levi-Schaffer, Role of reactive oxygen species (ROS) in apoptosis induction, Apoptosis, 5(5), 415-418 (2000). https://doi.org/10.1023/A:1009616228304
  5. K. J. Trouba, H. K. Hamadeh, R. P. Amin, and D. R. Germoled, Oxidative stress and its role in skin disease, Antioxid. Redox Signal., 4(4), 665-673 (2002). https://doi.org/10.1089/15230860260220175
  6. K. Apel and H. Hirt, Reactive oxygen species: metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373-399 (2004). https://doi.org/10.1146/annurev.arplant.55.031903.141701
  7. S. H. Park, J. M. Kim, J. H. Kim, Y. S. Oh, D. H. Joo, E. Y. Lee, H. S. Shin, A. R. Kim, S. L. Lee, and S. N. Park, Antioxidative effects and component analysis of Graviola (Annona muricata) leaf extract/fractions. J. Soc. Cosmet. Sci. Korea, 43(4), 309-320 (2017). https://doi.org/10.15230/SCSK.2017.43.4.309
  8. S. J. Oh and J. H. Mo, A comparative study on bioactivity of dried and fermented Salicornia herbacea extracts as cosmetics materials, Asian J. Beauty Cosmetol., 9(4), 1-8 (2011).
  9. Y. Zhang, G. Yao, X. Huang, and X. Wang, Advances in research on the main chemical constituents and pharmacological effects of Belamcanda chinensis (L.) DC. Asian J. Tradit. Med., 12(5), 201-209 (2017).
  10. L. Zhang, K. Wei, J. Xu, D. Yang, C. Zhang, Z. Wang, and M. Li, Belamcanda chinensis (L.) DC-An ethnopharmacological, phytochemical and pharmacological review, J. Ethnopharmacol., 186, 1-13 (2016). https://doi.org/10.1016/j.jep.2016.03.046
  11. R. H. Xin, J. F. Zheng, L. Cheng, W. J. Peng, and Y. J. Luo, Belamcanda chinensis (L.) DC: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine, Afr. J. Tradit. Complement. Altern. Med., 12(6), 39-70 (2015). https://doi.org/10.4314/ajtcam.v12i6.6
  12. D. Wozniak, B. Janda, I. Kapusta, W. Oleszek, and A. Matkowski, Antimutagenic and anti-oxidant activities of isoflavonoids from Belamcanda chinensis (L.) DC., Mutat. Res. Genet. Toxicol. Environ. Mutagen., 696(2), 148-153 (2010). https://doi.org/10.1016/j.mrgentox.2010.01.004
  13. D. Wozniak, J. Oszmianski, and A. Matkowski, Antimutagenic and antioxidant activity of the extract from Belamcanda chinensis (L.) DC., Acta Pol. Pharm., 63(3), 213-218 (2006).
  14. M. Liu, S. Yang, L. Jin, D. Hu, W. Xue, and S. Yang, In vitro antitumor and antioxidant activities of Belamcanda chinensis (L.) DC., J. Med. Plant Res., 6(43), 5566-5569 (2012).
  15. K. B. Oh, H. J. Kang, and H. Matsuoka, Detection of antifungal activity in Belamcanda chinensis by a single-cell bioassay method and isolation of its active compound, tectorigenin, Biosci. Biotechnol. Biochem., 65(4), 939-942 (2001). https://doi.org/10.1271/bbb.65.939
  16. J. W. Lee, C. Lee, Q. Jin, M. S. Lee, Y. S. Kim, J. T. Hong, M. K. Lee, and B. Y. Hwang, Chemical constituents from Belamcanda chinensis and their inhibitory effects on nitric oxide production in RAW 264.7 macrophage cells, Arch. Pharm. Res., 38(6), 991-997 (2015). https://doi.org/10.1007/s12272-014-0529-8
  17. K. S. Ahn, E. J. Noh, K. H. Cha, Y. S. Kim, S. S. Lim, K. H. Shin, and S. H. Jung, Inhibitory effects of irigenin from the rhizomes of Belamcanda chinensis on nitric oxide and prostaglandin E2 production in murine macrophage RAW 264.7 cells, Life Sci., 78(20), 2336-2342 (2006). https://doi.org/10.1016/j.lfs.2005.09.041
  18. G. H. Wang, G. X. Zou, X. M. You, Y. Zhang, H. Jiang, F. Li, and G. X. Li, Tectorigenin and irigenin inhibit lipopolysaccharide- induced nitric oxide synthase expression in murine macrophages. Biomed. Res., 28(12), 5412-5417 (2017).
  19. M. Miyazawa, K. Sakano, S. I. Nakamura, H. Shimamura, and H. Kosaka, Antimutagenic activity of isoflavone from Belamcanda chinensis, J. Oleo Sci., 50(7), 545-554 (2001). https://doi.org/10.5650/jos.50.545
  20. M. Liu, S. Yang, L. Jin, D. Hu, Z. Wu, and S. Yang, Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities, Molecules, 17(5), 6156-6169 (2012). https://doi.org/10.3390/molecules17056156
  21. A. R. Kim, M. C. Jung, H. I. Jeong, D. G. Song, Y. B. Seo, Y. H. Jeon, S. H. Park, H. S. Shin, S. L. Lee, and S. N. Park, Antioxidative and cellular protective effects of Lysimachia christinae Hance extract and fractions, Appl. Chem. Eng., 29(2), 176-184 (2018). https://doi.org/10.14478/ACE.2017.1113
  22. Y. S. Lee, M. E. Yun, Y. J. Lee, Y. M. Park, S. L. Lee, and S. N. Park, Antioxidant activities and cytoprotective effects of Lonicera japonica Thunb. extract and fraction against oxidative stress, Microbiol. Biotechnol. Lett., 46(1), 18-28 (2018). https://doi.org/10.4014/mbl.1711.11004
  23. J. Li, Winnie Z. M. Li, W. Huang, Anna W. H. Cheung, Cathy W. C. Bi, R. Duan, Ava J. Y. Guo, Tina T. X. Dong, and Karl W. K. Tsim, Quality evaluation of rhizoma belamcandae (Belamcanda chinensis (L.) DC) by using high-performance liquid chromatography coupled with diode array detector and mass spectrometry, J. Chromatogr. A, 1216(11), 2071-2078 (2009). https://doi.org/10.1016/j.chroma.2008.05.082
  24. G. Y. Xie, Y. Zhu, P. Shu, X. Y. Qin, G. Wu, Q. Wang, and M. J. Qin, Phenolic metabolite profiles and antioxidants assay of three Iridaceae medicinal plants for traditional Chinese medicine "She-gan" by on-line HPLC-DAD coupled with chemiluminescence (CL) and ESI-Q-TOF-MS/MS, J. Pharm. Biomed. Anal., 98, 40-51 (2014). https://doi.org/10.1016/j.jpba.2014.05.008