Figure 1. Cells used in the experiment (a) FCT Cell (b) K Cell.
Figure 2. Polarization curve at different temperatures.
Figure 3. Loss Separation at different temperatures (a) activation loss of Hao’s model (b) activation loss of Kim’s model (c) ohmic loss of Hao’s model (d) ohmic loss of Kim’s model (e) mass transfer loss of Hao’s model (f) mass transfer loss of Kim’s model.
Figure 4. Polarization curve at different pressures.
Figure 5. Loss Separation at different pressures (a) activation loss of Hao’s model (b) activation loss of Kim’s model (c) ohmic loss of Hao’s model (d) ohmic loss of Kim’s model (e) mass transfer loss of Hao’s model (f) mass transfer loss of Kim’s model.
Figure 6. Polarization curve of different oxygen concentrations.
Figure 7. Loss separation at different oxygen concentrations (a) activation loss of Hao’s model (b) activation loss of Kim’s model (c) ohmic loss of Hao’s model (d) ohmic loss of Kim’s model (e) mass transfer loss of Hao’s model (f) mass transfer loss of Kim’s model.
Figure 8. Polarization curve at different membrane thicknesses.
Figure 9. Loss separation at different membrane thicknesses (a) activation loss of Hao’s model (b) activation loss of Kim’s model (c) ohmic loss of Hao’s model (d) ohmic loss of Kim’s model (e) mass transfer loss of Hao’s model (f) mass transfer loss of Kim’s model.
Figure 10. Data fitting of Hao’s model (a) activation loss (b) ohmic loss (c) mass transfer loss.
Figure 11. Percentage of current density parameter iloss.
Figure 12. Data fitting results by changing converge coefficient c (a) activation loss (b) polarization curves.
Figure 13. Data fitting results by Hao’s model and New model (a) activation loss (b) ohmic loss (c) mass transfer loss.
Table 1. Standard Operation Conditions of Fuel Cell Performance Test
Table 2. Fitting Parameters and Losses at Different Temperatures (1,500 mA/cm2)
Table 3. Fitting Parameters and Losses at Different Pressures (1,500 mA/cm2)
Table 4. Fitting Parameters and Losses at Different Oxygen Concentrations (1,500 mA/cm2)
Table 5. Fitting Parameters and Losses at Different Membrane Thicknesses (1,500 mA/cm2)
References
- Y. Wang, K. S. Chen, J. Mishler, S. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88, 981-1007 (2010).
- T. Horde, P. Achard, and R. Metkemeijer, PEMFC application for aviation: Experimental and numerical study of sensitivity to altitude. Int. J. Hydrogen Energy, 37, 10818-10829 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.085
- O. Z. Sharaf and M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renew. Sustain. Energy Rev., 32, 810-853 (2014). https://doi.org/10.1016/j.rser.2014.01.012
- T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A. G. Olabi, Advances in stationary and portable fuel cell applications, Int. J. Hydrogen Energy, 41, 16509-16522 (2016). https://doi.org/10.1016/j.ijhydene.2016.02.057
- T. H. Bradley, B. A. Moffitt, D. N. Mavris, and D. E. Parekh, Development and experimental characterization of a fuel cell powered aircraft, J. Power Sources, 171, 793-801 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.215
- M. Ball and M. Weeda, The hydrogen economy - Vision or reality?, Int. J. Hydrogen Energy, 40, 7903-7919 (2015). https://doi.org/10.1016/j.ijhydene.2015.04.032
- J. Wishart, Z. Dong, and M. Secanell, Optimization of a PEM fuel cell system based on empirical data and a generalized electrochemical semi-empirical model, J. Power Sources, 161, 1041-1055 (2006). https://doi.org/10.1016/j.jpowsour.2006.05.056
- M. Secanell, J. Wishart, and P. Dobsona, Computational design and optimization of fuel cells and fuel cell systems: A review, J. Power Sources, 196, 3690-3704 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.011
- S. Busquet, C. E. Hubert, J. Labbe, D. Mayer, and R. Metkemeijer, A new approach to empirical electrical modelling of a fuel cell, an electrolyser or a regenerative fuel cell, J. Power Sources, 134, 41-48 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.018
- W. Lee, G. Park, T. Yang, Y. Yoon, and C. Kim, Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks, Int. J. Hydrogen Energy, 29, 961-966 (2004).
- J. H. Lee, T. R. Lalk, and A. J. Appleby, Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks, J. Power Sources, 70, 258-268 (1998). https://doi.org/10.1016/S0378-7753(97)02683-9
- P. Argyropoulos, K. Scott, A. K. Shukla, and C. Jackson, A semi-empirical model of the direct methanol fuel cell performance Part I. Model development and verification, J. Power Sources, 123, 190-199 (2003). https://doi.org/10.1016/S0378-7753(03)00558-5
- J. Lee and T. R. Lalk, Modeling fuel cell stack systems, J. Power Sources, 73, 229-241 (1997).
- K. Haraldsson and K. Wipke, Evaluating PEM fuel cell system models, J. Power Sources, 126, 88-97 (2004). https://doi.org/10.1016/j.jpowsour.2003.08.044
- J. Kim, S. Lee, and S. Srinivasan, Modeling of proton exchange membrane fuel cell performance with an empirical equation, J. Electrochem. Soc., 8, 2670-2674 (1995).
- G. Squadrito, G. Maggio, E. Passalacqua, F. Lufrano, and A. Patti, An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour, J. Appl. Electrochem., 29, 1449-1455 (1999). https://doi.org/10.1023/A:1003890219394
- L. Pisani, G. Murgia, M. Valentini, and B. D'Aguanno, A new semi-empirical approach to performance curves of polymer electrolyte fuel cells, J. Power Sources, 108, 192-203 (2002). https://doi.org/10.1016/S0378-7753(02)00014-9
- S. D. Fraser and V. Hacker, An empirical fuel cell polarization curve fitting equation for small current densities and no-load operation, J. Appl. Electrochem., 38, 451-456 (2008). https://doi.org/10.1007/s10800-007-9458-2
- D. Hao, J. Shen, Y. Hou, Y. Zhou, and H. Wang, An improved empirical fuel cell polarization curve model based on review analysis, Int. J. Chem. Eng., 16, 1-10 (2016).
- X. Liang, G. Pan, L. Xu, and J. Wang, A modified decal method for preparing the membrane electrode assembly of proton exchange membrane fuel cells, Fuel, 139, 393-400 (2015). https://doi.org/10.1016/j.fuel.2014.09.022
- C. Jung, W. Kim, and S. Yi, Optimization of catalyst ink composition for the preparation of a membrane electrode assembly in a proton exchange membrane fuel cell using the decal transfer, Int. J. Hydrogen Energy, 37, 18446-18454 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.013