References
- E. W. Barnes, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. London Ser. A 206 (1906), 249-297. https://doi.org/10.1098/rsta.1906.0019
- M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, Chapman and Hall, (CRC Press Company), Boca Raton, London, New York and Washington, D. C., 2001.
- J. Choi, D. S. Jang, and H. M. Srivastava, A generalization of the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 19 (2008), no. 1-2, 65-79. https://doi.org/10.1080/10652460701528909
- O. Daman and M. A. Pathan, A further generalization of the Hurwitz Zeta function, Math. Sci. Res. J. 16 (2012), no. 10, 251-259.
- A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions. Vol. I, McGraw-Hill Book Company, New York, Toronto and London, 1953.
- M. Garg, K. Jain, and S. L. Kalla, A further study of general Hurwitz-Lerch zeta function, Algebras Groups Geom. 25 (2008), 311-319.
- S. P. Goyal and R. K. Laddha, On the generalized Zeta function and the generalized Lambert function, Ganita Sandesh 11 (1997), no. 2, 99-108.
- N. T. Hai and S. B. Yakubovich, The Double Mellin-Barnes Type Integrals and Their Applications to Convolution Theory, World Scientific, Singapore, 1992.
-
D. Jankov, T. K. Pogany, and R. K. Saxena, An extended general Hurwitz-Lerch Zeta function as a Mathieu (
${\alpha}$ ,$\lambda$ )-series, Appl. Math. Lett. 24 (2011), no. 8, 1473-1476. https://doi.org/10.1016/j.aml.2011.03.040 - A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Vol. 204, Elsevier (North- Holland) Science Publishers, Amsterdam, London and New York, 2006.
- S. D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations, Appl. Math. Comput. 154 (2004), no. 3, 725-733. https://doi.org/10.1016/S0096-3003(03)00746-X
- A. M. Mathai and R. K. Saxena, Generalized Hypergeometric Functions with Applica- tions in Statistics and Physical Sciences, Lecture Notes Series No. 348, Springer-Verlag, Berlin, New York. Heidelberg, Germany, 1973.
- A. M. Mathai, The H-function with Applications in Statistics and Other Disciplines, Wiley Eastern Ltd. New Delhi and John Wiley and Sons, Inc. New York, 1978.
- A. M. Mathai, R. K. Saxena, and H. J. Haubold, The H-Functions: Theory and Applications, Springer, New York, 2010.
- R. B. Paris and D. Kaminski, Asymptotic and Mellin-Barnes Integrals, Cambridge University Press, Cambridge, 2001.
- M. A. Pathan and O. Daman, On generalization of Hurwitz zeta function, Submitted.
- S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Translated from the Russian: Integrals and Derivatives of Fractional Order and Some of Their Applications ("Nauka i Tekhnika", Minsk, 1987); Gordon and Breach Science Publishers: Reading, UK, 1993.
-
H. M. Srivastava, A new family of the
$\lambda$ -generalized Hurwitz-Lerch Zeta functions with applications, Appl. Math. Inf. Sci. 8 (2014), no. 4, 1485-1500. https://doi.org/10.12785/amis/080402 - H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer, Acedemic Publishers, Dordrecht, Boston and London, 2001.
- H. M. Srivastava, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science, Publishers, Amsterdam, London and New York, 2012.
- H. M. Srivastava, D. Jankov, T. K. Pogany, and R. K. Saxena, Two-sided inequalities for the extended Hurwitz-Lerch Zeta function, Comput. Math. Appl. 62 (2011), no. 1, 516-522. https://doi.org/10.1016/j.camwa.2011.05.035
- H. M. Srivastava and P. W. Karlsson, Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985.
- H. M. Srivastava, M.-J. Luo and R. K. Raina, New results involving a class of generalized Hurwitz-Lerch Zeta functions and their applications, Turkish J. Anal. Number Theory 1 (2013), no. 1, 26-35.
- H. M. Srivastava and H. L. Manocha, A Treatise on Generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1984.
- H. M. Srivastava, R. K. Saxena, T. K. Pogany, and R. Saxena, Integral and computational representations of the extended Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct. 22 (2011), no. 7, 487-506. https://doi.org/10.1080/10652469.2010.530128