References
- F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., New York, Inc: Springer-Verlag, 1992.
- V. Becerril, O. M. Hernandez, M. A. Perez, and V. Santiago, Frobenius pairs in abelian categories: Correspondences with cotorsion pairs, exact model categories, and Auslander-Buchweitz contexts, preprint. Available in arXiv:1602.07328 (2016).
- D. Bennis, Rings over which the class of Gorenstein at modules is closed under extensions, Comm. Algebra 37 (2009), no. 3, 855-868. https://doi.org/10.1080/00927870802271862
- D. Bennis, A note on Gorenstein at dimension, Algebra Colloq. 18 (2011), no. 1, 155-161. https://doi.org/10.1142/S1005386711000095
- D. Bennis and Mahdou, Gorenstein homological dimensions of commutative rings, unpublished manuscript. Available in arXiv:math/0611358v1 (2006).
- D. Bennis, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. https://doi.org/10.1090/S0002-9939-09-10099-0
- D. Bravo, J. Gillespie, and M. Hovey, The stable module category of a general ring, preprint. Available in arXiv:1405.5768 (2014).
- L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and at dimensions-A functorial description with applications, J. Algebra 302 (2006), no. 1, 231-279. https://doi.org/10.1016/j.jalgebra.2005.12.007
- N. Q. Ding and J. L. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
- N. Q. Ding, Y. L. Li, and L. X. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. https://doi.org/10.1017/S1446788708000761
- I. Emmanouil, On the finiteness of Gorenstein homological dimensions, J. Algebra 372 (2012), 376-396. https://doi.org/10.1016/j.jalgebra.2012.09.018
- E. E. Enochs, S. Estrada, and A. Iacob, Rings with nite Gorenstein global dimension, Math. Scand. 102 (2008), no. 1, 45-58. https://doi.org/10.7146/math.scand.a-15050
- E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
- E. E. Enochs, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter and Co., Berlin, 2000.
- E. E. Enochs and O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
- E. E. Enochs and J. A. Lepez-Ramos, Gorenstein flat modules, Nova Scince Pubishes, Inc., New York 2001.
- M. A. Esmkhani and M. Tousia, Gorenstein homological dimensions and Auslander categories, J. Algebra 308 (2007), no. 1, 321-329. https://doi.org/10.1016/j.jalgebra.2006.08.030
- J. Gillespie, Model Structures on Modules over Ding-Chen rings, Homology Homotopy Appl. 12 (2010), no. 1, 61-73. https://doi.org/10.4310/HHA.2010.v12.n1.a6
- H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
- N. Mahdou and M. Tamekkante, Strongly Gorenstein at modules and dimensions, Chin. Ann. Math. Ser. B 32 (2011), no. 4, 533-548. https://doi.org/10.1007/s11401-011-0659-y
- L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 4 (2008), no. 4, 497-506.
- R. S. Pierce, The global dimension of Boolean rings, J. Algebra 7 (1967), 91-99. https://doi.org/10.1016/0021-8693(67)90069-5
- J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math., Vol. 1634, Springer, Berlin, 1996.
- G. Yang, Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc. 49 (2012), no. 1, 31-47. https://doi.org/10.4134/JKMS.2012.49.1.031
- C. X. Zhang, Relative and Tate cohomology of Ding modules and complexes, J. Korean Math. Soc. 52 (2015), no. 4, 821-838. https://doi.org/10.4134/JKMS.2015.52.4.821