DOI QR코드

DOI QR Code

DING PROJECTIVE DIMENSION OF GORENSTEIN FLAT MODULES

  • Wang, Junpeng (Department of Mathematics Northwest Normal University)
  • Received : 2016.06.30
  • Accepted : 2017.08.08
  • Published : 2017.11.30

Abstract

Let R be a Ding-Chen ring. Yang [24] and Zhang [25] asked whether or not every R-module has finite Ding projective or Ding injective dimension. In this paper, we give a new characterization of that all modules have finite Ding projective and Ding injective dimension in terms of the relationship between Ding projective and Gorenstein flat modules. We also give an example to obtain negative answer to the above question.

Keywords

References

  1. F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd ed., New York, Inc: Springer-Verlag, 1992.
  2. V. Becerril, O. M. Hernandez, M. A. Perez, and V. Santiago, Frobenius pairs in abelian categories: Correspondences with cotorsion pairs, exact model categories, and Auslander-Buchweitz contexts, preprint. Available in arXiv:1602.07328 (2016).
  3. D. Bennis, Rings over which the class of Gorenstein at modules is closed under extensions, Comm. Algebra 37 (2009), no. 3, 855-868. https://doi.org/10.1080/00927870802271862
  4. D. Bennis, A note on Gorenstein at dimension, Algebra Colloq. 18 (2011), no. 1, 155-161. https://doi.org/10.1142/S1005386711000095
  5. D. Bennis and Mahdou, Gorenstein homological dimensions of commutative rings, unpublished manuscript. Available in arXiv:math/0611358v1 (2006).
  6. D. Bennis, Global Gorenstein dimensions, Proc. Amer. Math. Soc. 138 (2010), no. 2, 461-465. https://doi.org/10.1090/S0002-9939-09-10099-0
  7. D. Bravo, J. Gillespie, and M. Hovey, The stable module category of a general ring, preprint. Available in arXiv:1405.5768 (2014).
  8. L. W. Christensen, A. Frankild, and H. Holm, On Gorenstein projective, injective and at dimensions-A functorial description with applications, J. Algebra 302 (2006), no. 1, 231-279. https://doi.org/10.1016/j.jalgebra.2005.12.007
  9. N. Q. Ding and J. L. Chen, Coherent rings with finite self-FP-injective dimension, Comm. Algebra 24 (1996), no. 9, 2963-2980. https://doi.org/10.1080/00927879608825724
  10. N. Q. Ding, Y. L. Li, and L. X. Mao, Strongly Gorenstein flat modules, J. Aust. Math. Soc. 86 (2009), no. 3, 323-338. https://doi.org/10.1017/S1446788708000761
  11. I. Emmanouil, On the finiteness of Gorenstein homological dimensions, J. Algebra 372 (2012), 376-396. https://doi.org/10.1016/j.jalgebra.2012.09.018
  12. E. E. Enochs, S. Estrada, and A. Iacob, Rings with nite Gorenstein global dimension, Math. Scand. 102 (2008), no. 1, 45-58. https://doi.org/10.7146/math.scand.a-15050
  13. E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633. https://doi.org/10.1007/BF02572634
  14. E. E. Enochs, Relative Homological Algebra, de Gruyter Exp. Math., Vol. 30, Walter de Gruyter and Co., Berlin, 2000.
  15. E. E. Enochs and O. M. G. Jenda, and B. Torrecillas, Gorenstein flat modules, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), no. 1, 1-9.
  16. E. E. Enochs and J. A. Lepez-Ramos, Gorenstein flat modules, Nova Scince Pubishes, Inc., New York 2001.
  17. M. A. Esmkhani and M. Tousia, Gorenstein homological dimensions and Auslander categories, J. Algebra 308 (2007), no. 1, 321-329. https://doi.org/10.1016/j.jalgebra.2006.08.030
  18. J. Gillespie, Model Structures on Modules over Ding-Chen rings, Homology Homotopy Appl. 12 (2010), no. 1, 61-73. https://doi.org/10.4310/HHA.2010.v12.n1.a6
  19. H. Holm, Gorenstein homological dimensions, J. Pure Appl. Algebra 189 (2004), no. 1-3, 167-193. https://doi.org/10.1016/j.jpaa.2003.11.007
  20. N. Mahdou and M. Tamekkante, Strongly Gorenstein at modules and dimensions, Chin. Ann. Math. Ser. B 32 (2011), no. 4, 533-548. https://doi.org/10.1007/s11401-011-0659-y
  21. L. X. Mao and N. Q. Ding, Gorenstein FP-injective and Gorenstein flat modules, J. Algebra Appl. 4 (2008), no. 4, 497-506.
  22. R. S. Pierce, The global dimension of Boolean rings, J. Algebra 7 (1967), 91-99. https://doi.org/10.1016/0021-8693(67)90069-5
  23. J. Z. Xu, Flat Covers of Modules, Lecture Notes in Math., Vol. 1634, Springer, Berlin, 1996.
  24. G. Yang, Homological properties of modules over Ding-Chen rings, J. Korean Math. Soc. 49 (2012), no. 1, 31-47. https://doi.org/10.4134/JKMS.2012.49.1.031
  25. C. X. Zhang, Relative and Tate cohomology of Ding modules and complexes, J. Korean Math. Soc. 52 (2015), no. 4, 821-838. https://doi.org/10.4134/JKMS.2015.52.4.821