References
- D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), no. 2, 225-245.
- D. F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979), no. 1, 79-106. https://doi.org/10.1080/00927877908822334
- D. F. Anderson and G. W. Chang, Homogeneous splitting sets of a graded integral domain, J. Algebra 288 (2005), no. 2, 527-544. https://doi.org/10.1016/j.jalgebra.2005.03.007
- D. F. Anderson, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169-184. https://doi.org/10.1016/j.jalgebra.2013.04.021
- D. F. Anderson, G. W. Chang, and M. Zafrullah, Graded Prufer domains, Comm. Algebra, to appear.
- G. W. Chang, Characterizations of *-cancellation ideals of an integral domain, Comm. Algebra 37 (2009), no. 9, 3309-3320. https://doi.org/10.1080/00927870802502795
-
G. W. Chang, B. G. Kang, and J. W. Lim, Prufer
$\nu$ -multiplication domains and related domains of the form D +$D_s$ [${\Gamma}^{\ast}$ ], J. Algebra 323 (2010), no. 11, 3124-3133. https://doi.org/10.1016/j.jalgebra.2010.03.010 - G. W. Chang and D. Y. Oh, Discrete valuation overrings of a graded Noetherian domain, J. Commutative Algebra, to appear.
- S. El Bagdahi, M. Fontana, and G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra 193 (2004), no. 1-3, 27-60. https://doi.org/10.1016/j.jpaa.2004.03.011
- S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), no. 2-3, 171-184. https://doi.org/10.1016/S0022-4049(01)00146-3
- R. Gilmer, Commutative Semigroup Rings, Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, 1984.
- R. Gilmer, Multiplicative Ideal Theory, Queen's papers in Pure and Appl. Math., vol. 90, 1992.
-
M. Grin, Some results on
$\nu$ -multiplication rings, Canad. J. Math. 97 (1967), 710-722. - F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory, Marcel Dekker, New York, 1998.
-
B. G. Kang, Prufer
$\nu$ -multiplication domains and the ring$R[X]N_{\nu}$ , J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9 - K. A. Loper, Almost Dedekind domains which are not Dedekind, In: J. W. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra, pp. 279-292, Springer, 2006.
- D. G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge Univ. Press, Cambridge, 1968.