DOI QR코드

DOI QR Code

ON t-ALMOST DEDEKIND GRADED DOMAINS

  • Chang, Gyu Whan (Department of Mathematics Education Incheon National University) ;
  • Oh, Dong Yeol (Department of Mathematics Education Chosun University)
  • Received : 2016.08.09
  • Accepted : 2016.12.21
  • Published : 2017.11.30

Abstract

Let ${\Gamma}$ be a nonzero torsionless commutative cancellative monoid with quotient group ${\langle}{\Gamma}{\rangle}$, $R={\bigoplus}_{{\alpha}{\in}{\Gamma}}R_{\alpha}$ be a graded integral domain graded by ${\Gamma}$ such that $R_{{\alpha}}{\neq}\{0\}$ for all ${\alpha}{\in}{\Gamma},H$ be the set of nonzero homogeneous elements of R, C(f) be the ideal of R generated by the homogeneous components of $f{\in}R$, and $N(H)=\{f{\in}R{\mid}C(f)_v=R\}$. In this paper, we introduce the notion of graded t-almost Dedekind domains. We then show that R is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain and RH is a t-almost Dedekind domains. We also show that if $R=D[{\Gamma}]$ is the monoid domain of ${\Gamma}$ over an integral domain D, then R is a graded t-almost Dedekind domain if and only if D and ${\Gamma}$ are t-almost Dedekind, if and only if $R_{N(H)}$ is an almost Dedekind domain. In particular, if ${\langle}{\Gamma}{\rangle}$ isatisfies the ascending chain condition on its cyclic subgroups, then $R=D[{\Gamma}]$ is a t-almost Dedekind domain if and only if R is a graded t-almost Dedekind domain.

Keywords

References

  1. D. D. Anderson and D. F. Anderson, Divisorial ideals and invertible ideals in a graded integral domain, J. Algebra 76 (1982), no. 2, 225-245.
  2. D. F. Anderson, Graded Krull domains, Comm. Algebra 7 (1979), no. 1, 79-106. https://doi.org/10.1080/00927877908822334
  3. D. F. Anderson and G. W. Chang, Homogeneous splitting sets of a graded integral domain, J. Algebra 288 (2005), no. 2, 527-544. https://doi.org/10.1016/j.jalgebra.2005.03.007
  4. D. F. Anderson, Graded integral domains and Nagata rings, J. Algebra 387 (2013), 169-184. https://doi.org/10.1016/j.jalgebra.2013.04.021
  5. D. F. Anderson, G. W. Chang, and M. Zafrullah, Graded Prufer domains, Comm. Algebra, to appear.
  6. G. W. Chang, Characterizations of *-cancellation ideals of an integral domain, Comm. Algebra 37 (2009), no. 9, 3309-3320. https://doi.org/10.1080/00927870802502795
  7. G. W. Chang, B. G. Kang, and J. W. Lim, Prufer $\nu$-multiplication domains and related domains of the form D + $D_s$[${\Gamma}^{\ast}$], J. Algebra 323 (2010), no. 11, 3124-3133. https://doi.org/10.1016/j.jalgebra.2010.03.010
  8. G. W. Chang and D. Y. Oh, Discrete valuation overrings of a graded Noetherian domain, J. Commutative Algebra, to appear.
  9. S. El Bagdahi, M. Fontana, and G. Picozza, Semistar Dedekind domains, J. Pure Appl. Algebra 193 (2004), no. 1-3, 27-60. https://doi.org/10.1016/j.jpaa.2004.03.011
  10. S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, J. Pure Appl. Algebra 171 (2002), no. 2-3, 171-184. https://doi.org/10.1016/S0022-4049(01)00146-3
  11. R. Gilmer, Commutative Semigroup Rings, Chicago Lectures in Mathematics, Univ. Chicago Press, Chicago, 1984.
  12. R. Gilmer, Multiplicative Ideal Theory, Queen's papers in Pure and Appl. Math., vol. 90, 1992.
  13. M. Grin, Some results on $\nu$-multiplication rings, Canad. J. Math. 97 (1967), 710-722.
  14. F. Halter-Koch, Ideal Systems. An Introduction to Multiplicative Ideal Theory, Marcel Dekker, New York, 1998.
  15. B. G. Kang, Prufer $\nu$-multiplication domains and the ring $R[X]N_{\nu}$ , J. Algebra 123 (1989), no. 1, 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  16. K. A. Loper, Almost Dedekind domains which are not Dedekind, In: J. W. Brewer, S. Glaz, W. Heinzer, B. Olberding (Eds.), Multiplicative Ideal Theory in Commutative Algebra, pp. 279-292, Springer, 2006.
  17. D. G. Northcott, Lessons on Rings, Modules, and Multiplicities, Cambridge Univ. Press, Cambridge, 1968.