References
- L. Deleaval, Two results on the Dunkl maximal operator, Studia Math. 203 (2011), no. 1, 47-68. https://doi.org/10.4064/sm203-1-3
- C. F. Dunkl, Integral kernels with reflection group invariance, Canad. J. Math. 43 (1991), no. 6, 1213-1227. https://doi.org/10.4153/CJM-1991-069-8
- C. F. Dunkl, Hankel transforms associated to finite reflection groups, Hypergeometric functions on domains of positivity, Jack polynomials, and applications (Tampa, FL, 1991), 123-138, Contemp. Math., 138, Amer. Math. Soc., Providence, RI, 1992.
- C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several variables, Cambridge Univ. Press, 2001.
- L. Gallardo and C. Rejeb, Proprietes de moyenne pour les fonctions harmoniques et polyharmoniques au sens de Dunkl, C. R. Acad. Sci. Paris 353 (2015), no. 2, 105-109. https://doi.org/10.1016/j.crma.2014.11.013
- L. Gallardo, A new mean value property for harmonic functions relative to the Dunkl- Laplacian operator and applications, Trans. Amer. Math. Soc. 368 (2016), no. 5, 3727-3753.
- L. Gallardo, Support properties of the intertwining and the mean value operators in Dunkl theory, To appear in Proceedings of the AMS. hal-01331693.
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, 1990.
- M. F. de Jeu, The Dunkl transform, Invent. Math. 113 (1993), no. 1, 147-162. https://doi.org/10.1007/BF01244305
- R. Kane, Reflection Groups and Invariant Theory, CMS Books in Mathematics. Springer-Verlag, New York, 2001.
- E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group, Compositio Math. 85 (1993), no. 3, 333-373.
- M. Rosler, Positivity of Dunkl's intertwining operator, Duke Math. J. 98 (1999), no. 3, 445-463. https://doi.org/10.1215/S0012-7094-99-09813-7
- M. Rosler, Dunkl Operators: Theory and Applications, Orthogonal polynomials and special functions (Leuven, 2002), 93-135, Lecture Notes in Math., 1817, Springer, Berlin, 2003.
- E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration and Hilbert Spaces, Princeton University Press, 2005.
- S. Thangavelu and Y. Xu, Convolution operator and maximal function for Dunkl transform, J. Anal. Math. 97 (2005), 25-56. https://doi.org/10.1007/BF02807401
- K. Trimeche, The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Integral Transform. Spec. Funct. 12 (2001), no. 4, 394-374.
- K. Trimeche, Paley-Wiener theorem for the Dunkl transform and Dunkl translation operators, Integral Transform Spec. Func. 13 (2002), no. 1, 17-38. https://doi.org/10.1080/10652460212888