• 제목/요약/키워드: extended Hurwitz-Lerch Zeta functions

검색결과 4건 처리시간 0.018초

CERTAIN NEW EXTENSION OF HURWITZ-LERCH ZETA FUNCTION

  • KHAN, WASEEM A.;GHAYASUDDIN, M.;AHMAD, MOIN
    • Journal of applied mathematics & informatics
    • /
    • 제37권1_2호
    • /
    • pp.13-21
    • /
    • 2019
  • In the present research paper, we introduce a further extension of Hurwitz-Lerch zeta function by using the generalized extended Beta function defined by Parmar et al.. We investigate its integral representations, Mellin transform, generating functions and differential formula. In view of diverse applications of the Hurwitz-Lerch Zeta functions, the results presented here may be potentially useful in some related research areas.

AN EXTENSION OF THE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS OF TWO VARIABLES

  • Choi, Junesang;Parmar, Rakesh K.;Saxena, Ram K.
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1951-1967
    • /
    • 2017
  • We aim to introduce a further extension of a family of the extended Hurwitz-Lerch Zeta functions of two variables. We then systematically investigate several interesting properties of the extended function such as its integral representations which provide extensions of various earlier corresponding results of two and one variables, its summation formula, its Mellin-Barnes type contour integral representations, its computational representation and fractional derivative formulas. A multi-parameter extension of the extended Hurwitz-Lerch Zeta function of two variables is also introduced. Relevant connections of certain special cases of the main results presented here with some known identities are pointed out.

INCOMPLETE EXTENDED HURWITZ-LERCH ZETA FUNCTIONS AND ASSOCIATED PROPERTIES

  • Parmar, Rakesh K.;Saxena, Ram K.
    • 대한수학회논문집
    • /
    • 제32권2호
    • /
    • pp.287-304
    • /
    • 2017
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [Integral Transforms Spec. Funct. 23 (2012), 659-683] by means of the incomplete Pochhammer symbols $({\lambda};{\kappa})_{\nu}$ and $[{\lambda};{\kappa}]_{\nu}$, we first introduce incomplete Fox-Wright function. We then define the families of incomplete extended Hurwitz-Lerch Zeta function. We then systematically investigate several interesting properties of these incomplete extended Hurwitz-Lerch Zeta function which include various integral representations, summation formula, fractional derivative formula. We also consider an application to probability distributions and some special cases of our main results.

On Extended Hurwitz-Lerch Zeta Function

  • Mohannad Jamal Said Shahwan;Maged Gumman Bin-Saad;Mohammed Ahmed Pathan
    • Kyungpook Mathematical Journal
    • /
    • 제63권3호
    • /
    • pp.485-506
    • /
    • 2023
  • This paper investigates an extended form Hurwitz-Lerch zeta function, as well as related integral images, ordinary and fractional derivatives, and series expansions, using the term extended beta function. We establish a connection between the extended Hurwitz-Lerch zeta function and the Laguerre polynomials. Furthermore, we present a probability distribution application of the extended Hurwitz-Lerch zeta function ζ𝛿,𝜇𝜈,λ. Several results, both known and new, are shown to follow as special cases of our findings.