References
- Breslow NE and Clayton DG (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 9-25.
- Chen MH and Shao QM (2001). Propriety of posterior distribution for dichotomous quantal response models, Proceedings of the American Mathematical Society, 129, 293-302.
- Daniels JM and PourahmadiM(2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89, 553-566. https://doi.org/10.1093/biomet/89.3.553
- Daniels JM and Zhao YD (2003). Modelling the random effects covariance matrix in longitudinal data, Statistics in Medicine, 22, 1631-1647. https://doi.org/10.1002/sim.1470
- Daniels MJ and Hogan JW (2008). Missing Data in Longitudinal Studies:Strategies for Bayesian Modeling and Sensitivity Analysis, Chapman& Hall/CRC, Boca Raton, FL.
- Diggle PJ, Heagerty P, Liang KY, and Zeger SL (2002). Analysis of Longitudinal Data(2nd ed), Oxford University Press, New York.
- Galecki AT (1994) General class of covariance structures for two or more repeated factors in longitudinal data analysis, Communications in Statistics-Theory and Method, 23, 3105-3119. https://doi.org/10.1080/03610929408831436
- Gelfand AE and Ghosh SK (1998). Model choice: a minimum posterior predictive loss approach, Biometrika, 85, 1-11. https://doi.org/10.1093/biomet/85.1.1
- Gelman A and Rubin D (1992). Inference from iterative simulation using multiple sequences, Statistical Science, 7, 457-511. https://doi.org/10.1214/ss/1177011136
- Gibbons RD and Hedeker D (1997). Random effects probit and logistic regression models for three-level data, Biometrics, 53, 1527-1537. https://doi.org/10.2307/2533520
- Heagerty PJ and Kurland BF (2001). Misspecified maximum likelihood estimates and generalised linear mixed models, Biometrika, 88, 973-985. https://doi.org/10.1093/biomet/88.4.973
- Ibrahim JG and Laud PW (1991). On Bayesian analysis of generalized linear models using Jeffreys's prior, Journal of the American Statistical Association, 86, 981-986. https://doi.org/10.1080/01621459.1991.10475141
- Kim J and Lee K (2015). Survey of models for random effects covariance matrix in generalized linear mixed model, Korean Journal of Applied Statistics, 28, 211-219. https://doi.org/10.5351/KJAS.2015.28.2.211
- Kim ST, Uhm JE, Lee J, Sun J, Sohn I, Kim SW, Jung S, Park YH, Ahn JS, Park K, and Ahn MJ (2012). Randomized phase II study of gefitinib versus erlotinib in patients with advanced non-small cell lung cancer who failed previous chemotherapy, Lung Cancer, 75, 82-88. https://doi.org/10.1016/j.lungcan.2011.05.022
- Lee K (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communication for Statistical Applications and Methods, 20, 235-240. https://doi.org/10.5351/CSAM.2013.20.3.235
- Lee K and Daniels MJ (2008). Marginalized models for longitudinal ordinal data with application to quality of life studies, Statistics in Medicine, 27, 4359-4380. https://doi.org/10.1002/sim.3352
- Lee K, Daniels MJ, and Joo Y (2013). Flexible marginalized models for bivariate longitudinal ordinal data, Biostatistics, 14, 462-476. https://doi.org/10.1093/biostatistics/kxs058
- Lee K, Kang S, Liu X, and Seo D (2011). Likelihood-based approach for analysis of longitudinal nominal data using marginalized random effects models, Journal of Applied Statistics, 38, 1577-1590. https://doi.org/10.1080/02664763.2010.515675
- Lee K and Yoo JK (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics & Data Analysis, 80, 111-116. https://doi.org/10.1016/j.csda.2014.06.016
- Lee K, Lee J, Hagan J, and Yoo JK (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
- Liu I and Agresti A (2005). The analysis of ordered categorical data: an overview and a survey of recent developments, Test, 14, 1-73. https://doi.org/10.1007/BF02595397
- Litiere S, Alonso A, and Molenberghs G (2007). Type I and type II error under random-effects mis-specifiecation in generalized linear mixed models, Biometrics, 63, 1038-1944. https://doi.org/10.1111/j.1541-0420.2007.00782.x
- Litiere S, Alonso A, and Molenberghs G (2008). The impact of a misspecified random-effects distribution on the estimation and the performance of inferential procedures in generalized linear mixed models, Statistics in Medicine, 27, 3125-3144.
- McCullagh P (1980). Regression models for ordinal data, Journal of the Royal Statistical Society Series B (Methodological), 42, 109-142. https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
- Nooraee N, Molenberghs G, and van den Heuvel ER (2014). GEE for longitudinal ordinal data: comparing R-geepack, R-multgee, R-repolr, SAS-GENMOD, SPSS-GENLIN, Computational Statistics & Data Analysis, 77, 70-83. https://doi.org/10.1016/j.csda.2014.03.009
- Pan J and MacKenzie G (2003). On modelling mean-covariance structures in longitudinal studies, Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
- Pan J and MacKenzie G (2006). Regression models for covariance structures in longitudinal studies, Statistical Modelling, 6, 43-57. https://doi.org/10.1191/1471082X06st105oa
- Pourahmadi M (1999). Joint mean-covariance models with applications to longitudinal data: uncon- strained parameterisation, Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
- Pourahmadi M (2000). Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435 https://doi.org/10.1093/biomet/87.2.425
- Pourahmadi M and Daniels MJ (2002). Dynamic conditionally linear mixed models for longitudinal data, Biometrics, 58, 225-231. https://doi.org/10.1111/j.0006-341X.2002.00225.x
- Rothman AJ, Levina E, and Zhu J (2010). A new approach to Cholesky-based covariance regularization in high dimensions, Biometrika, 97, 539-550. https://doi.org/10.1093/biomet/asq022
- Spiegelhalter D, Best N, Carlin B, and van der Linde A (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society Series B (Statistical Methodology), 64, 583-639. https://doi.org/10.1111/1467-9868.00353
- Spiegelhalter D, Thomas A, Best N, and Lunn D (2003). WinBUGS Version 1.4 User Manual, Medical Research Council Biostatistics Unit, Cambridge, UK.
- Sturtz S, Ligges U, and Gelman A (2005). R2WinBUGS: a package for running WinBUGS from R Journal of Statistical Software, 12, 1-16.
- Zhang W and Leng C (2012). A moving average Cholesky factor model in covariance modelling for longitudinal data, Biometrika, 99, 141-150. https://doi.org/10.1093/biomet/asr068