References
- Anderson TW (1963). Asymptotic theory for principal component analysis, Annals of Mathematical Statistics, 34, 122-148. https://doi.org/10.1214/aoms/1177704248
- Anderson TW and Rubin H (1956). Statistical inference in factor analysis. In Proceedings of 3rd Berkeley Symposium on Mathematical Statistics and Probability, 5, University of California Press, 111-150.
- Chen J, Li P, and Fu Y (2012). Inference on the order of a normal mixture, Journal of the American Statistical Association, 107, 1096-1105. https://doi.org/10.1080/01621459.2012.695668
- Cook RD (1994). Using dimension-reduction subspaces to identify important inputs in models of physical systems. In Proceedings of the Section on Physical and Engineering Sciences (pp. 18-25), American Statistical Association, Alexandria, VA.
- Cook RD (1998). Regression Graphics: Ideas for Studying Regressions through Graphics, JohnWiley & Sons, New York.
- Cook RD and Weisberg S (1991). Comment on sliced inverse regression by K. C. Li, Journal of the American Statistical Association, 86, 328-332.
- Cook RD and Weisberg S (1994). An Introduction to Regression Graphics, John Wiley & Sons, New York.
- Gentle JE (2007). Matrix Algebra: Theory, Computations, and Applications in Statistics, Springer, New York.
- Jeffries NO (2003). A note on 'Testing the number of components in a normal mixture', Biometrika, 90, 991-994. https://doi.org/10.1093/biomet/90.4.991
- Jolliffe IT (2002). Principal Component Analysis(2nd ed), Springer, New York.
- Lawley DN (1953). A modified method of estimation in factor analysis and some large sample results. In Uppsala Symposium on Psychological Factor Analysis (pp. 35-42), Munksgaards, Copenhagen.
- Li B, Zha H, and Chiaromonte F (2005). Contour regression: a general approach to dimension reduction, Annals of Statistics, 33, 1580-616. https://doi.org/10.1214/009053605000000192
- Li KC (1992). On principal Hessian directions for data visualization and dimension reduction: another application of Stein's lemma, Journal of the American Statistical Association, 87, 1025-1039. https://doi.org/10.1080/01621459.1992.10476258
- Li KC (1991). Sliced inverse regression for dimension reduction, Journal of the American Statistical Association, 86, 316-327. https://doi.org/10.1080/01621459.1991.10475035
- Lo Y, Mendell NR, and Rubin DB (2001). Testing the number of components in a normal mixture, Biometrika, 88, 767-778. https://doi.org/10.1093/biomet/88.3.767
- Lo Y (2005). Likelihood ratio tests of the number of components in a normal mixture with unequal variances, Statistics & Probability Letters, 71, 225-235. https://doi.org/10.1016/j.spl.2004.11.007
- Meyer CD (2000). Matrix Analysis and Applied Linear Algebra, Society for Industrial and Applied Mathematics, Philadelphia, PA.
- Paisley J and Carin L (2009). Nonparametric factor analysis with beta process priors. In Proceedings of the 26th Annual International Conference on Machine Learning(pp. 777-784), ACM, New York.
- Scrucca L (2011). Model-based SIR for dimension reduction, Computational Statistics & Data Analysis, 55, 3010-3026. https://doi.org/10.1016/j.csda.2011.05.006
- Seo B and Kim D (2012). Root selection in normal mixture models, Computational Statistics & Data Analysis, 56, 2454-2470. https://doi.org/10.1016/j.csda.2012.01.022
- Tipping ME and Bishop CM (1999a). Probabilistic principal component analysis, Journal of the Royal Statistical Society Series B (Statistical Methodology), 61, 611-622. https://doi.org/10.1111/1467-9868.00196
- Tipping ME and Bishop CM (1999b). Mixtures of probabilistic principal component analyzers, Neural Computation, 11, 443-482. https://doi.org/10.1162/089976699300016728
- Vidal R (2011). Subspace clustering, IEEE Signal Processing Magazine, 28, 52-68. https://doi.org/10.1109/MSP.2010.939739
- Whittle P (1952). On principal components and least square methods of factor analysis, Scandinavian Actuarial Journal, 36, 223-239.
- Young G (1941). Maximum likelihood estimation and factor analysis, Psychometrika, 6, 49-53. https://doi.org/10.1007/BF02288574