Acknowledgement
Supported by : Ministry of Land, Infrastructure and Transport
References
- Breiman L (2001). Random forests, Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324
- Dessai S, Lu X, and Hulme M (2005). Limited sensitivity analysis of regional climate change probabilities for the 21st century, Journal of Geophysical Research, 110, D19108. https://doi.org/10.1029/2005JD005919
- Duan Q, Ajami NK, Gao X, and Sorooshian S (2007). Multi-model ensemble hydrologic prediction using Bayesian model averaging, Advances in Water Resources, 30, 1371-1386. https://doi.org/10.1016/j.advwatres.2006.11.014
- Efron B(1983). Estimating the error rate of a prediction rule: improvement on cross-validation, Journal of the American Statistical Association, 78, 316-331. https://doi.org/10.1080/01621459.1983.10477973
- Efron B (2012). Bayesian inference and the parametric bootstrap, The Annals of Applied Statistics, 6, 1971-1997. https://doi.org/10.1214/12-AOAS571
- Giorgi F and Mearns LO (2002). Calculation of average, uncertainty range, and reliability of regional climate changes from AOGCM simulations via the" reliability ensemble averaging" (REA) method, Journal of Climate, 15, 1141-1158. https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
- Gneiting T, Balabdaoui F, and Raftery AE (2007). Probabilistic forecasts, calibration and sharpness, Journal of the Royal Statistical Society Series B (Statistical Methodology), 69, 243-268. https://doi.org/10.1111/j.1467-9868.2007.00587.x
- Gneiting T and Raftery AE (2007). Strictly proper scoring rules, prediction, and estimation, Journal of the American Statistical Association, 102, 359-378. https://doi.org/10.1198/016214506000001437
- Gneiting T, Raftery AE, Westveld III AH, and Goldman T (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation, Monthly Weather Review, 133, 1098-1118. https://doi.org/10.1175/MWR2904.1
- Greene AM, Goddard L, and Lall U (2006). Probabilistic multimodel regional temperature change projections, Journal of Climate, 19, 4326-4343. https://doi.org/10.1175/JCLI3864.1
- Kharin VV and Zwiers FW (2002). Climate predictions with multimodel ensembles, Journal of Climate, 15, 793-799. https://doi.org/10.1175/1520-0442(2002)015<0793:CPWME>2.0.CO;2
- Krishnamurti TN, Kishtawal CM, LaRow TE, Bachiochi DR, Zhang Z, Williford CE, Gadgil S, and Surendran S (1999). Improved weather and seasonal climate forecasts from multimodel superensemble, Science, 285, 1548-1550. https://doi.org/10.1126/science.285.5433.1548
- Krishnamurti TN, Kishtawal CM, Zhang Z, LaRow T, Bachiochi D,Williford E, Gadgil S, and Surendran S (2000). Multimodel ensemble forecasts for weather and seasonal climate, Journal of Climate, 13, 4196-4216. https://doi.org/10.1175/1520-0442(2000)013<4196:MEFFWA>2.0.CO;2
- Krzanowski WJ and Hand DJ (1997). Assessing error rate estimators: the leave-one-out method reconsidered, Australian & New Zealand Journal of Statistics, 39, 35-46.
- Lambert SJ and Boer GJ (2001). CMIP1 evaluation and intercomparison of coupled climate models, Climate Dynamics, 17, 83-106. https://doi.org/10.1007/PL00013736
- Laurent R and Cai X (2007). A maximum entropy method for combining AOGCMs for regional intra-year climate change assessment, Climatic Change, 82, 411-435. https://doi.org/10.1007/s10584-006-9197-0
- Maqsood I, Khan MR, and Abraham A (2004). An ensemble of neural networks for weather forecasting, Neural Computing & Applications, 13, 112-122.
- Mearns LO, Hulme M, Carter TR, Leemans R, Lal M, and Whetton P (2001). Climate scenario development. In Houghton JT et al. (Eds), Climate Change 2001: The Scientific Basis (pp. 739-768), Cambridge University Press, Cambridge.
- Min SK and Hense A (2006). A Bayesian assessment of climate change using multimodel ensembles. Part I: Global mean surface temperature, Journal of Climate, 19, 3237-3256. https://doi.org/10.1175/JCLI3784.1
- Min SK and Hense A (2007). A Bayesian assessment of climate change using multimodel ensembles. Part II: Regional and seasonal mean surface temperatures, Journal of Climate, 20, 2769-2790. https://doi.org/10.1175/JCLI4178.1
- Raftery AE, Gneiting T, Balabdaoui F, and Polakowski M (2005). Using Bayesian model averaging to calibrate forecast ensembles, Monthly Weather Review, 133, 1155-1174. https://doi.org/10.1175/MWR2906.1
- Simmons MP, Pickett KM, and Miya M (2004). How meaningful are Bayesian support values?, Molecular Biology and Evolution, 21, 188-199. https://doi.org/10.1093/molbev/msh014
- Sloughter JM, Raftery AE, Gneiting T, and Fraley C (2007). Probabilistic quantitative precipitation forecasting using Bayesian model averaging, Monthly Weather Review, 135, 3209-3220. https://doi.org/10.1175/MWR3441.1
- Sperber K, Gleckler P, Covey C, Taylor K, Bader D, Phillips T, Fiorino M, and AchutaRao K (2004). An Appraisal of Coupled Climate Model Simulations, Lawrence Livermore National Laboratory, Livermore, CA.
- Unger DA, Van Den Dool H, O'Lenic E, and Collins D (2009). Ensemble regression, MonthlyWeather Review, 137, 2365-2379.
Cited by
- Deterministic and probabilistic evaluation of raw and post processed sub-seasonal to seasonal precipitation forecasts in different precipitation regimes pp.1434-4483, 2019, https://doi.org/10.1007/s00704-018-2680-5