DOI QR코드

DOI QR Code

Community-level facilitation by macroalgal foundation species peaks at an intermediate level of environmental stress

  • Scrosati, Ricardo A. (St. Francis Xavier University, Department of Biology)
  • Received : 2017.01.08
  • Accepted : 2017.02.20
  • Published : 2017.03.15

Abstract

In rocky intertidal habitats, abiotic stress due to desiccation and thermal extremes increases with elevation because of tides. A study in Atlantic Canada showed that, at low elevations where conditions are benign due to the brief low tides, fucoid algal canopies (Ascophyllum nodosum and Fucus spp.) do not affect the structure of benthic communities. However, at middle and high elevations, where low tides last longer, fucoid canopies limit abiotic extremes and increase the richness (number of invertebrate and algal species, except fucoids) of benthic communities. Using the data from that study, this paper compares the intensity of facilitation and its importance (relative to all other sources of variation in richness) between middle and high elevations, which represent intermediate and high stress, respectively. Facilitation intensity was calculated as the percent increase in benthic richness between quadrats with low and high canopy cover, while the importance of facilitation was calculated as the percentage of variation in richness explained by canopy cover. Data for 689 quadrats spanning 350 km of coastline were used. Both the intensity and importance of facilitation were greater at middle elevations than at high elevations. As canopies do not affect benthic communities at low elevations, this study suggests that the facilitation-stress relationship at the community level is unimodal for this marine system. Such a pattern was found for some terrestrial systems dominated by canopy-forming plants. Thus, it might be ubiquitous in nature and, as further studies refine it, it might help to predict community-level facilitation depending on environmental stress.

Keywords

References

  1. Adey, W. H. & Hayek, L.-A. C. 2005. The biogeographic structure of the western North Atlantic rocky intertidal. Cryptogam. Algol. 26:35-66.
  2. Altieri, A. H. & van de Koppel, J. 2014. Foundation species in marine ecosystems. In Bertness, M. D., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. (Eds.) Marine Community Ecology and Conservation. Sinauer Associates, Sunderland, MA, pp. 37-56.
  3. Armas, C., Rodriguez-Echeverria, S. & Pugnaire, F. I. 2011. A field test of the stress-gradient hypothesis along an aridity gradient. J. Veg. Sci. 22:818-827. https://doi.org/10.1111/j.1654-1103.2011.01301.x
  4. Ballantyne, M. & Pickering, C. M. 2015. Shrub facilitation is an important driver of alpine plant community diversity and functional composition. Biodivers. Conserv. 24:1859-1875. https://doi.org/10.1007/s10531-015-0910-z
  5. Beermann, A. J., Ellrich, J. A., Molis, M. & Scrosati, R. A. 2013. Effects of seaweed canopies and adult barnacles on barnacle recruitment: the interplay of positive and negative influences. J. Exp. Mar. Biol. Ecol. 448:162-170. https://doi.org/10.1016/j.jembe.2013.07.001
  6. Bertness, M. D. & Callaway, R. 1994. Positive interactions in communities. Trends Ecol. Evol. 9:191-193. https://doi.org/10.1016/0169-5347(94)90088-4
  7. Bertness, M. D., Leonard, G. H., Levine, J. M., Schmidt, P. R. & Ingraham, A. O. 1999. Testing the relative contribution of positive and negative interactions in rocky intertidal communities. Ecology 80:2711-2726. https://doi.org/10.1890/0012-9658(1999)080[2711:TTRCOP]2.0.CO;2
  8. Bonanomi, G., Stinca, A., Battista Chirico, G., Ciaschetti, G., Saracino, A. & Incerti, G. 2016. Cushion plant morphology controls biogenic capability and facilitation effects of Silene acaulis along an elevation gradient. Funct. Ecol. 30:1216-1226. https://doi.org/10.1111/1365-2435.12596
  9. Brooker, R. W., Maestre, F. T., Callaway, R. M., Lortie, C. L., Cavieres, L. A., Kunstler, G., Liancourt, P., Tielborger, K., Travis, J. M. J., Anthelme, F., Armas, C., Coll, L., Corcket, E., Delzon, S., Forey, E., Kikvidze, Z., Olofsson, J., Pugnaire, F., Quiroz, C. L., Saccone, P., Schiffers, K., Seifan, M., Touzard, B. & Michalet, R. 2008. Facilitation in plant communities: the past, the present, and the future. J. Ecol. 96:18-34.
  10. Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18:119-125. https://doi.org/10.1016/S0169-5347(02)00045-9
  11. Bulleri, F., Bruno, J., Silliman, B. R. & Stachowicz, J. J. 2016. Facilitation and the niche: implications for coexistence, range shifts, and ecosystem functioning. Funct. Ecol. 30:70-78. https://doi.org/10.1111/1365-2435.12528
  12. Butterfield, B. J., Bradford, J. B., Armas, C., Prieto, I. & Pugnaire, F. I. 2016. Does the stress-gradient hypothesis hold water? Disentangling spatial and temporal variation in plant effects on soil moisture in dryland systems. Funct. Ecol. 30:10-19. https://doi.org/10.1111/1365-2435.12592
  13. Castanho, C. T., Oliveira, A. A. & Prado, P. I. K. L. 2015. Does extreme environmental severity promote plant facilitation? An experimental field test in a subtropical coastal dune. Oecologia 178:855-866. https://doi.org/10.1007/s00442-015-3285-7
  14. Cavieres, L. A., Hernandez-Fuentes, C., Sierra-Almeida, A. & Kikvidze, Z. 2016. Facilitation among plants as an insurance policy for diversity in Alpine communities. Funct. Ecol. 30:52-59. https://doi.org/10.1111/1365-2435.12545
  15. de Bello, F., Dolezal, J., Dvorsky, M., Chlumska, Z., Rehakova, K., Klimesova, J. & Klimes, L. 2011. Cushions of Thylacospermum caespitosum (Caryophyllaceae) do not facilitate other plants under extreme altitude and dry conditions in the north-west Himalayas. Ann. Bot. 108:567-573. https://doi.org/10.1093/aob/mcr183
  16. Eckersley, L. K. & Scrosati, R. A. 2012. Temperature, desiccation, and species performance trends along an intertidal elevation gradient. Curr. Dev. Oceanogr. 5:59-73.
  17. Fritz, C. O., Morris, P. E. & Richler, J. J. 2012. Effect size estimates: current use, calculations, and interpretation. J. Exp. Psychol. Gen. 141:2-18. https://doi.org/10.1037/a0024338
  18. He, Q. & Bertness, M. D. 2014. Extreme stresses, niches, and positive species interactions along stress gradients. Ecology 95:1437-1443. https://doi.org/10.1890/13-2226.1
  19. He, Q., Bertness, M. D. & Altieri, A. H. 2013. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16:695-706. https://doi.org/10.1111/ele.12080
  20. Holmgren, M., Gomez-Aparicio, L., Quero, J. L. & Valladares, F. 2012. Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities. Oecologia 169:293-305. https://doi.org/10.1007/s00442-011-2196-5
  21. Holmgren, M. & Scheffer, M. 2010. Strong facilitation in mild environments: the stress gradient hypothesis revisited. J. Ecol. 98:1269-1275. https://doi.org/10.1111/j.1365-2745.2010.01709.x
  22. Howell, D. C. 2002. Statistical methods for psychology. Duxbury, Pacific Grove, CA, 802 pp.
  23. Koyama, A. & Tsuyuzaki, S. 2013. Facilitation by tussockforming species on seedling establishment collapses in an extreme drought year in a post-mined Sphagnum peatland. J. Veg. Sci. 24:473-483. https://doi.org/10.1111/j.1654-1103.2012.01474.x
  24. Longtin, C. M., Scrosati, R. A., Whalen, G. B. & Garbary, D. J. 2009. Distribution of algal epiphytes across environmental gradients at different scales: intertidal elevation, host canopies, and host fronds. J. Phycol. 45:820-827. https://doi.org/10.1111/j.1529-8817.2009.00710.x
  25. Lopez, R. P., Squeo, F. A., Armas, C., Kelt, D. A. & Gutierrez, J. R. 2016. Enhanced facilitation at the extreme end of the aridity gradient in the Atacama Desert: a communitylevel approach. Ecology 97:1593-1604. https://doi.org/10.1890/15-1152.1
  26. Lortie, C. J., Filazzola, A. & Sotomayor, D. A. 2016. Functional assessment of animal interactions with shrub-facilitation complexes: a formal synthesis and conceptual framework. Funct. Ecol. 30:41-51. https://doi.org/10.1111/1365-2435.12530
  27. Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. 2009. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97:199-205. https://doi.org/10.1111/j.1365-2745.2008.01476.x
  28. Menge, B. A. & Branch, G. M. 2001. Rocky intertidal communities. In Bertness, M. D., Gaines, S. D. & Hay, M. E. (Eds.) Marine Community Ecology. Sinauer Associates, Sunderland, MA, pp. 221-251.
  29. Michalet, R., Brooker, R. W., Cavieres, L. A., Kikvidze, Z., Lortie, C. J., Pugnaire, F. I., Valiente-Banuet, A. & Callaway, R. M. 2006. Do biotic interactions shape both sides of the humped-back model of species richness in plant communities? Ecol. Lett. 9:767-773. https://doi.org/10.1111/j.1461-0248.2006.00935.x
  30. Michalet, R., Le Bagousse-Pinguet, Y., Maalouf, J. -P. & Lortie, C. J. 2014. Two alternatives to the stress-gradient hypothesis at the edge of life: the collapse of facilitation and the switch from facilitation to competition. J. Veg. Sci. 25:609-613. https://doi.org/10.1111/jvs.12123
  31. Michalet, R. & Pugnaire, F. I. 2016. Facilitation in communities: underlying mechanisms, community and ecosystem implications. Funct. Ecol. 30:3-9. https://doi.org/10.1111/1365-2435.12602
  32. Pugnaire, F. I., Armas, C. & Maestre, F. T. 2011. Positive plant interactions in the Iberian Southeast: mechanisms, environmental gradients, and ecosystem function. J. Arid Environ. 75:1310-1320. https://doi.org/10.1016/j.jaridenv.2011.01.016
  33. Raffaelli, D. & Hawkins, S. J. 1999. Intertidal ecology. Chapman & Hall, London, 356 pp.
  34. Ruttan, A., Filazzola, A. & Lortie, C. J. 2016. Shrub-annual facilitation complexes mediate insect community structure in arid environments. J. Arid Environ. 134:1-9. https://doi.org/10.1016/j.jaridenv.2016.06.009
  35. Soliveres, S., Smit, C. & Maestre, F. T. 2015. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning, and evolution of plant communities. Biol. Rev. Camb. Philos. Soc. 90:297-313. https://doi.org/10.1111/brv.12110
  36. Watt, C. A. & Scrosati, R. A. 2013a. Bioengineer effects on understory species richness, diversity, and composition change along an environmental stress gradient: experimental and mensurative evidence. Estuar. Coast. Shelf Sci. 123:10-18. https://doi.org/10.1016/j.ecss.2013.02.006
  37. Watt, C. A. & Scrosati, R. A. 2013b. Regional consistency of intertidal elevation as a mediator of seaweed canopy effects on benthic species richness, diversity, and composition. Mar. Ecol. Prog. Ser. 491:91-99. https://doi.org/10.3354/meps10521
  38. Watt, C. A. & Scrosati, R. A. 2014. Experimental and mensurative data on the abundance of primary producers and consumers from intertidal habitats in Canada. Ecology 95:1429. https://doi.org/10.1890/14-0071.1

Cited by

  1. Growth, reproduction and recruitment of Silvetia siliquosa (Fucales, Phaeophyceae) transplants using polyethylene rope and natural rock methods vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.12.6
  2. Why Do We Need to Document and Conserve Foundation Species in Freshwater Wetlands? vol.11, pp.2, 2019, https://doi.org/10.3390/w11020265
  3. Impacts of Acidic Seawater on Early Developmental Stages of Fucus gardneri at Burrard Inlet, British Columbia vol.6, pp.None, 2019, https://doi.org/10.3389/fmars.2019.00755
  4. Diversity and structure of epibenthic communities of the red algae zone in the White Sea vol.42, pp.5, 2019, https://doi.org/10.1007/s00300-019-02488-2
  5. Positive cascading effects of epiphytes enhance the persistence of a habitat‐forming macroalga and the biodiversity of the associated invertebrate community under increasing stress vol.109, pp.2, 2021, https://doi.org/10.1111/1365-2745.13539