DOI QR코드

DOI QR Code

Ingestion rate and grazing impact by the mixotrophic ciliate Mesodinium rubrum on natural populations of marine heterotrophic bacteria in the coastal waters of Korea

  • Seong, Kyeong Ah (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Myung, Geumog (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Yih, Wonho (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Kim, Hyung Seop (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Jo, Hyun Jung (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Park, Jae Yeon (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ;
  • Yoo, Yeong Du (Department of Marine Biotechnology, College of Ocean Science and Technology, Kunsan National University)
  • Received : 2016.11.24
  • Accepted : 2017.03.08
  • Published : 2017.03.15

Abstract

We explored feeding by the mixotrophic ciliate Mesodinium rubrum, heterotrophic nanoflagellates (HNFs), and small ciliates (<$30{\mu}m$ in cell length) on natural populations of heterotrophic bacteria in Masan Bay, Keum River Estuary, and in the coastal waters of the Saemankeum area, Korea when M. rubrum red tides occurred. We also measured ingestion rates of M. rubrum on cultured heterotrophic bacteria as a function of bacterial concentration in the laboratory. The ingestion rates of M. rubrum on natural populations of heterotrophic bacteria (2.3-16.8 bacteria $grazer^{-1}h^{-1}$) were comparable to or lower than those of co-occurring HNFs (10.7-41.7 bacteria $grazer^{-1}h^{-1}$), but much lower than those of co-occurring small ciliates (76.0-462.2 bacteria $grazer^{-1}h^{-1}$). However, the maximum grazing coefficient of M. rubrum ($0.245d^{-1}$) on natural populations of heterotrophic bacteria was much higher than that of small ciliates ($0.089d^{-1}}$), and slightly higher than that of HNFs ($0.204d^{-1}$). With increasing bacterial concentrations, ingestion rates of M. rubrum on cultured heterotrophic bacteria continuously increased, but became saturated at higher prey concentrations over $1-5{\times}10^6cells\;mL^{-1}$. The maximum ingestion rate of M. rubrum on cultured heterotrophic bacteria was 34.4 bacteria $grazer^{-1}h^{-1}$. Based on the present study, it is suggested that M. rubrum may be an important grazer of heterotrophic bacteria and sometimes have considerable grazing impact on natural populations of heterotrophic bacteria.

Keywords

References

  1. Andersen, R. J., Wolfe, M. S. & Faulkner, D. J. 1974. Autotoxic antibiotic production by a marine Chromobacterium. Mar. Biol. 27:281-285. https://doi.org/10.1007/BF00394363
  2. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A. & Thingstad, F. 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10:257-263. https://doi.org/10.3354/meps010257
  3. Boenigk, J. & Novarino, G. 2004. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34:181-192. https://doi.org/10.3354/ame034181
  4. Carver, C. E., Mallet, A. L., Warnock, R. & Douglas, D. 1996. Red-colored digestive glands in cultured mussels and scallops: the implication of Mesodinium rubrum. J. Shellfish Res. 15:191-201.
  5. Cole, J. J., Findlay, S. & Pace, M. L. 1988. Bacterial production in fresh and saltwater ecosystems: a cross-system overview. Mar. Ecol. Prog. Ser. 43:1-10. https://doi.org/10.3354/meps043001
  6. Epstein, S. S. 1997. Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb. Ecol. 34:188-198. https://doi.org/10.1007/s002489900048
  7. Fenchel, T. 1982. Ecology of heterotrophic microflagellates. IV. Quantitative occurrence and importance as bacterial consumers. Mar. Ecol. Prog. Ser. 9:35-42. https://doi.org/10.3354/meps009035
  8. Frost, B. W. 1972. Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17:805-815. https://doi.org/10.4319/lo.1972.17.6.0805
  9. Hansen, P. J., Moldrup, M., Tarangkoon, W., Garcia-Cuetos, L. & Moestrup, O. 2012. Direct evidence for symbiont sequestration in the marine red tide ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 66:63-75. https://doi.org/10.3354/ame01559
  10. Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189. https://doi.org/10.1007/BF00395638
  11. Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H. & Song, J. Y. 2008. Feeding and grazing impact by small marine heterotrophic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol. 55:271-288. https://doi.org/10.1111/j.1550-7408.2008.00336.x
  12. Jimenez, R. & Intrigo, P. 1987. Observation blooms of Mesodinium rubrum in the upwelling area of Ecuador. Oceanologica Acta, Supplementum 1987. In Proceedings of International Symposium on Equatorial Vertical Motion, Gauthier-Villars, Paris, pp. 145-154.
  13. Kat, M. 1984. "Red" oysters (Ostrea edulis L.) caused by Mesodinium rubrum in Lake Grevelingen. Aquaculture 38:375-377. https://doi.org/10.1016/0044-8486(84)90343-0
  14. Kim, G. H., Han, J. H., Kim, B., Han, J. W., Nam, S. W., Shin, W., Park, J. W. & Yih, W. 2016. Cryptophyte gene regulation in the kleptoplastidic, karyokleptic ciliate Mesodinium rubrum. Harmful Algae 52:23-33. https://doi.org/10.1016/j.hal.2015.12.004
  15. Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
  16. Lee, S. & Fuhrman, J. A. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53:1298-1303.
  17. Lee, S. H. 1993. Measurement of carbon and nitrogen biomass and biovolume from naturally derived marine bacterioplankton. In Kemp, P. F., Sherr, B. F., Sherr, E. B. & Cole, J. J. (Eds.) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 319-325.
  18. Lindholm, T. 1985. Mesodinium rubrum: a unique photosynthetic ciliate. Adv. Aquat. Microbiol. 3:1-48.
  19. Lohmann, H. 1908. Untersuchung zur Feststellung des vollstandigen Gehaltes des Meeres an Plankton. 10:129-370.
  20. Myung, G., Kim, H. S., Jang, K. G., Park, J. W. & Yih, W. 2007. Importance of the mixotrophic ciliate Myrionecta rubra in marine ecosystems. The Sea J. Korean Soc. Oceanogr. 12:178-185 (in Korean).
  21. Myung, G., Yih, W., Kim, H. S., Park, J. S. & Cho, B. C. 2006. Ingestion of bacterial cells by the marine photosynthetic ciliate Myrionecta rubra. Aquat. Microb. Ecol. 44:175- 180. https://doi.org/10.3354/ame044175
  22. Norland, S. 1993. The relationship between biomass and volume of bacteria. In Kemp, P. F., Sherr, B. F., Sherr, E. B. & Cole, J. J. (Eds.) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, pp. 303-307.
  23. Packard, T. T., Blasco, D. & Barber, R. T. 1978. Mesodinium rubrum in the Baja California upwelling system. In Boje, R. & Tomczak, M. (Eds.) Upwelling Ecosystems. Springer Verlag, Berlin, pp. 73-89.
  24. Porter, K. G. & Feig, Y. S. 1980. The use of DAPI for identification and enumeration of bacteria and blue-green algae. Limnol. Oceanogr. 25:943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  25. Porter, K. G., Sherr, E. B., Sherr, B. F., Pace, M. & Sanders, R. W. 1985. Protozoa in planktonic food webs. J. Protozool. 32:409-415. https://doi.org/10.1111/j.1550-7408.1985.tb04036.x
  26. Posch, T., Simek, K., Vrba, J., Pernthaler, J., Nedoma, J., Sattler, B., Sonntag, B. & Psenner, R. 1999. Predator-induced changes of bacterial size-structure and productivity studied on an experimental microbial community. Aquat. Microb. Ecol. 18:235-246. https://doi.org/10.3354/ame018235
  27. Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
  28. Sherr, B. F., Sherr, E. B. & Fallon, R. D. 1987. Use of monodispersed, fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Environ. Microbiol. 53:958-965.
  29. Sherr, E. & Sherr, B. 1988. Role of microbes in pelagic food webs: a revised concept. Limnol. Oceanogr. 33:1225- 1227. https://doi.org/10.4319/lo.1988.33.5.1225
  30. Simon, M. & Azam, F. 1989. Protein content and proteins synthesis rates of planktonic marine bacteria. Mar. Ecol. Prog. Ser. 51:201-213. https://doi.org/10.3354/meps051201
  31. Smith, W. O. Jr. & Barber, R. T. 1979. A carbon budget for the autotrophic ciliate Mesodinium rubrum. J. Phycol. 15:27-33. https://doi.org/10.1111/j.0022-3646.1979.00027.x
  32. Taylor, F. J. R., Blackbourn, D. J. & Blackbourn, J. 1971. The red-water ciliate Mesodinium rubrum and its "incomplete symbionts"; a review including new ultrastructural observations. J. Fish. Res. Board Can. 28:391-407. https://doi.org/10.1139/f71-052
  33. Welch, P. S. 1948. Limnological methods. Blaikston Co., Philadelphia, PA, 381 pp.
  34. Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. 2004. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aqut. Microb. Ecol. 36:165-170. https://doi.org/10.3354/ame036165
  35. Yih, W., Kim, H. S., Myung, G., Park, J. W., Yoo, Y. D. & Jeong, H. J. 2013. The red-tide ciliate Mesodinium rubrum in Korean coastal waters. Harmful Algae 30(Suppl.1):S53-S61. https://doi.org/10.1016/j.hal.2013.10.006
  36. Yoo, Y. D., Seong, K. A., Myung, G., Kim, H. S., Jeong, H. J., Palenik, B. & Yih, W. 2015. Ingestion of the unicellular cyanobacterium Synechococcus by the mixotrophic red tide ciliate Mesodinium rubrum. Algae 30:281-290. https://doi.org/10.4490/algae.2015.30.4.281

Cited by

  1. pp.00223646, 2018, https://doi.org/10.1111/jpy.12794
  2. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria vol.73, pp.None, 2017, https://doi.org/10.1016/j.hal.2018.02.003
  3. Factors shaping community patterns of protists and bacteria on a European scale vol.22, pp.6, 2017, https://doi.org/10.1111/1462-2920.14992