DOI QR코드

DOI QR Code

A pathogen of New Zealand Pyropia plicata (Bangiales, Rhodophyta), Pythium porphyrae (Oomycota)

  • Received : 2017.01.17
  • Accepted : 2017.02.25
  • Published : 2017.03.15

Abstract

Geographic distributions of pathogens are affected by dynamic processes involving host susceptibility, availability and abundance. An oomycete, Pythium porphyrae, is the causative agent of red rot disease, which plagues Pyropia farms in Korea and Japan almost every year and causes serious economic damage. We isolated an oomycete pathogen infecting Pyropia plicata from a natural population in Wellington, New Zealand. The pathogen was identified as Pythium porphyrae using cytochrome oxidase subunit 1 and internal transcribed spacer of the rDNA cistron molecular markers. Susceptibility test showed that this Pythium from New Zealand was able to infect several different species and genera of Bangiales including Pyropia but is not able to infect their sporophytic (conchocelis) phases. The sequences of the isolated New Zealand strain were also identical to Pythium chondricola from Korea and the type strain from the Netherlands. Genetic species delimitation analyses found no support for separating P. porphyrae from P. chondricola, nor do we find morphological characters to distinguish them. We propose that Pythium chondricola be placed in synonymy with P. porphyrae. It appears that the pathogen of Pyropia, both in aquaculture in the northern hemisphere and in natural populations in the southern hemisphere is one species.

Keywords

References

  1. Arasaki, S. 1947. Studies on the rot of Porphyra tenera by a Pythium. Nippon Suisan Gakkaishi 13:74-90. https://doi.org/10.2331/suisan.13.74
  2. Arasaki, S., Akino, K. & Tomiyama, T. 1968. A comparison of some physiological aspects in a marine Pythium on the host and on the artificial medium. Bull. Misaki Mar. Biol. Inst. Kyoto Univ. 12:203-206.
  3. Blouin, N. A., Brodie, J. A., Grossman, A. C., Xu, P. & Brawley, S. H. 2011. Porphyra: a marine crop shaped by stress. Trends Plant Sci. 16:29-37. https://doi.org/10.1016/j.tplants.2010.10.004
  4. De Cock, A. W. A. M. 1986. Marine Pythiaceae from decaying seaweeds in the Netherlands. Mycotaxon 25:101-110.
  5. De la Bastide, P. Y., Leung, W. L. & Hintz, W. E. 2015. Species composition of the genus Saprolegnia in fin fish aquaculture environments, as determined by nucleotide sequence analysis of the nuclear rDNA ITS regions. Fungal Biol. 119:27-43. https://doi.org/10.1016/j.funbio.2014.10.006
  6. Ding, H. & Ma, J. 2005. Simultaneous infection by red rot and chytrid diseases in Porphyra yezoensis Ueda. J. Appl. Phycol. 17:51-56. https://doi.org/10.1007/s10811-005-5523-6
  7. Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29:1969-1973. https://doi.org/10.1093/molbev/mss075
  8. FAO FishStat, Chen, J. & Xu, P. 2016. Cultured Aquatic Species Information Programme. Porphyra spp. Available from: http://www.fao.org/fishery/culturedspecies/Porphyra_ spp/en. Accessed Oct 20, 2016.
  9. Fenchel, T. & Finlay, B. J. 2004. The ubiquity of small species: patterns of local and global diversity. BioScience 54:777-784. https://doi.org/10.1641/0006-3568(2004)054[0777:TUOSSP]2.0.CO;2
  10. Food and Agriculture Organization of the United Nations. 2014. The state of world fisheries and aquaculture: opportunities and challenges. Food and Agriculture Organization of the United Nations, Rome, 223 pp.
  11. Francis, M. M., Webb, V. & Zuccarello, G. C. 2016. Marine yeast biodiversity on seaweeds in New Zealand waters. N. Z. J. Bot. 54:30-47. https://doi.org/10.1080/0028825X.2015.1103274
  12. Freshwater, D. W. & Rueness, J. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33:187-194. https://doi.org/10.2216/i0031-8884-33-3-187.1
  13. Fujisawa, T. & Barraclough, T. G. 2013. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62:707-724. https://doi.org/10.1093/sysbio/syt033
  14. Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci. 15:633-640. https://doi.org/10.1016/j.tplants.2010.08.005
  15. Goff, L. J. & Moon, D. A. 1993. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. J. Phycol. 29:381-384. https://doi.org/10.1111/j.0022-3646.1993.00381.x
  16. Kageyama, K. 2014. Molecular taxonomy and its application to ecological studies of Pythium species. J. Gen. Plant Pathol. 80:314-326. https://doi.org/10.1007/s10327-014-0526-2
  17. Kawamura, Y., Yokoo, K., Tojo, M. & Hishiike, M. 2005. Distribution of Pythium porphyrae, the causal agent of red rot disease of Porphyrae spp., in the Ariake Sea, Japan. Plant Dis. 89:1041-1047. https://doi.org/10.1094/PD-89-1041
  18. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647- 1649. https://doi.org/10.1093/bioinformatics/bts199
  19. Kerwin, J. L., Johnson, L. M., Whisler, H. C. & Tuininga, A. R. 1992. Infection and morphogenesis of Pythium marinum in species of Porphyra and other red algae. Can. J. Bot. 70:1017-1024. https://doi.org/10.1139/b92-126
  20. Kim, G. H., Kochkova, T. A., Lee, D. J. & Im, S. H. 2016. Chloroplast virus causes green-spot disease in cultivated Pyropia of Korea. Algal Res. 17:293-299. https://doi.org/10.1016/j.algal.2016.05.023
  21. Kim, G. H., Moon, K. -H., Kim, J. -Y., Shim, J. & Klochkova, T. A. 2014. A revaluation (sic) of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249-265. https://doi.org/10.4490/algae.2014.29.4.249
  22. Kim, M. S., Kim, S. Y. & Nelson, W. 2010. Symphyocladia lithophila sp. nov. (Rhodomelaceae, Ceramiales), a new Korean red algal species based on morphology and rbcL sequences. Bot. Mar. 53:233-241.
  23. Kingman, J. F. C. 1982. The coalescent. Stoch. Process Their Appl. 13:235-248. https://doi.org/10.1016/0304-4149(82)90011-4
  24. Klochkova, T. A., Jung, S. & Kim, G. H. 2016a. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J. Appl. Phycol. https://doi.org/10.1007/s10811-016-0947-8.
  25. Klochkova, T. A., Shim, J. B., Hwang, M. S. & Kim, G. H. 2012. Host-parasite interactions and host species susceptibility of the marine oomycete parasite, Olpidiopsis sp., from Korea that infects red algae. J. Appl. Phycol. 24:135-144. https://doi.org/10.1007/s10811-011-9661-8
  26. Klochkova, T. A., Shin, Y. J., Moon, K. -H., Motomura, T. & Kim, G. H. 2016b. New species of unicellular obligate parasite, Olpidiopsis pyropiae sp. nov., that plagues Pyropia sea farms in Korea. J. Appl. Phycol. 28:73-83. https://doi.org/10.1007/s10811-015-0595-4
  27. Lee, S. J., Hwang, M. S., Park, M. A., Baek, J. M., Ha, D. -S., Lee, J. E. & Lee, S. R. 2015. Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers. Algae 30:217-222. https://doi.org/10.4490/algae.2015.30.3.217
  28. Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., Lopez-Bautista, J. M., Zuccarello, G. C. & De Clerck, O. 2014. DNA-based species delimitation in algae. Eur. J. Phycol. 49:179-196.
  29. Levesque, C. A. & De Cock, A. W. A. M. 2004. Molecular phylogeny and taxonomy of the genus Pythium. Mycol. Res. 108:1363-1383. https://doi.org/10.1017/S0953756204001431
  30. Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T. G. & Vogler, A. P. 2009. Accelerated species Inventory on Madagascar using coalescent-based models of species delineation. Syst. Biol. 58:298-311. https://doi.org/10.1093/sysbio/syp027
  31. Mukai, L. S., Craigie, J. S. & Brown, R. G. 1981. Chemical composition and structure of the cell walls of the conchocelis and thallus phases of Porphyra tenera (Rhodophyceae). J. Phycol. 17:192-198. https://doi.org/10.1111/j.0022-3646.1981.00192.x
  32. Nelson, W. A., Farr, T. J. & Broom, J. E. S. 2006. Phylogenetic relationships and generic concepts in the red order Bangiales: challenges ahead. Phycologia 45:249-259. https://doi.org/10.2216/05-26.1
  33. Park, C. S., Sakaguchi, K., Kakinuma, M. & Amano, H. 2000. Comparison of the morphological and physiological features of the red rot disease fungus Pythium sp. isolated from Porphyra yezoensis from Korea and Japan. Fish. Sci. 66:261-269.
  34. Patterson, D. J. 1989. Stramenopiles: chromophytes from a protistan perspective. In Green, J. C., Leadbeater, B. S. C. & Diver, W. L. (Eds.) The Chromophyte Algae: Problems and Perspectives, Systematics Association Special Vol. 38. Clarendon Press, Oxford, pp. 357-379.
  35. Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., Kamoun, S., Sumlin, W. D. & Vogler, A. P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55:595-609. https://doi.org/10.1080/10635150600852011
  36. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21:1864-1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
  37. Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. 2014. Tracer v1.6. Available from: http://beast.bio.ed.ac.uk/Tracer/. Accessed Feb 3, 2017.
  38. Robideau, G. P., De Cock, A. W. A. M., Coffey, M. D., Voglmayr, H., Brouwer, H., Bala, K., Chitty, D. W., Desaulniers, N., Eggertson, Q. A., Gachon, C. M. M., Hu, C. -H., Kupper, F. C., Rintoul, T. L., Sarhan, E., Verstappen, E. C. P., Zhang, Y., Bonants, P. J. M., Ristaino, J. B. & Levesque, C. A. 2011. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol. Ecol. Resour. 11:1002-1011. https://doi.org/10.1111/j.1755-0998.2011.03041.x
  39. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  40. Sandoval-Sierra, J. V., Martin, M. P. & Dieguez-Uribeondo, J. 2014. Species identification in the genus Saprolegnia (Oomycetes): defining DNA-based molecular operational taxonomic units. Fungal Biol. 118:559-578. https://doi.org/10.1016/j.funbio.2013.10.005
  41. Sparrow, F. K. Jr. 1931. Two new species of Pythium parasitic on green algae. Ann. Bot. 45:257-277.
  42. Sparrow, F. K. Jr. 1932. Observations on the parasitic ability of certain species of Pythium. Phytopathology 22:385-390.
  43. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  44. Sutherland, J. E., Lindstrom, S. C., Nelson, W. A., Brodie, J., Lynch, M. D. J., Hwang, M. S., Choi, H. -G., Miyata, M., Kikuchi, N., Oliveira, M. C., Farr, T., Neefus, C., Mols- Mortensen, A., Milstein, D. & Muller, K. M. 2011. A new look at an ancient order: generic revision of the Bangiales (Rhodophyta). J. Phycol. 47:1131-1151. https://doi.org/10.1111/j.1529-8817.2011.01052.x
  45. Takahashi, M., Ichitani, T. & Sasaki, M. 1977. Pythium porphyrae Takahashi et Sasaki, sp. nov. causing red rot of marine algae Porphyra spp. Trans. Mycol. Soc. Jpn. 18:279-285.
  46. Uppalapati, S. R. & Fujita, Y. 2000. Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J. Phycol. 36:359-366.
  47. Vreeland, V. & Kloareg, B. 2000. Cell wall biology in red algae: divide and conquer. J. Phycol. 36:793-797.
  48. West, J. A. & McBride, D. L. 1999. Long-term and diurnal carpospore discharge patterns in the Ceramiaceae, Rhodomelaceae and Delesseriaceae (Rhodophyta). Hydrobiologia 398/399:101-113. https://doi.org/10.1023/A:1017025815001
  49. White, T. J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J. (Eds.) PCR Protocols: A Guide to Methods and Applications. Academic Press, New York, NY, pp. 315-322.
  50. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869-2876. https://doi.org/10.1093/bioinformatics/btt499
  51. Zuccarello, G. C. & Lokhorst, G. M. 2005. Molecular phylogeny of the genus Tribonema (Xanthophyceae) using rbcL gene sequence data: monophyly of morphologically simple algal species. Phycologia 44:384-392. https://doi.org/10.2216/0031-8884(2005)44[384:MPOTGT]2.0.CO;2

Cited by

  1. Infection and cox2 sequence of Pythium chondricola (Oomycetes) causing red rot disease in Pyropia yezoensis (Rhodophyta) in Korea vol.32, pp.2, 2017, https://doi.org/10.4490/algae.2017.32.5.16
  2. Isolation and characterization of two phototropins in the freshwater green alga, Spirogyra varians (Streptophyta, Zygnematales) vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.9.9
  3. Detection of Pythium porphyrae infecting Philippine Pyropia acanthophora based on morphology and nuclear rRNA internal transcribed spacer sequences pp.1610-739X, 2018, https://doi.org/10.1007/s10327-018-0815-2
  4. Compositional Shifts of Bacterial Communities Associated With Pyropia yezoensis and Surrounding Seawater Co-occurring With Red Rot Disease vol.10, pp.None, 2019, https://doi.org/10.3389/fmicb.2019.01666
  5. Characterization of Pythium chondricola associated with red rot disease of Pyropia yezoensis (Ueda) (Bangiales, Rhodophyta) from Lianyungang, China vol.37, pp.3, 2017, https://doi.org/10.1007/s00343-019-8075-3
  6. Red And far‐red regulation of filament movement correlates with the expression of phytochrome and FHY1 genes in Spirogyra varians (Zygnematales, Streptophyta)1 vol.55, pp.3, 2017, https://doi.org/10.1111/jpy.12849
  7. Transcriptomic Insights into Innate Immunity Responding to Red Rot Disease in Red Alga Pyropia yezoensis vol.20, pp.23, 2017, https://doi.org/10.3390/ijms20235970
  8. Occurrence and pathogenicity of Pythium (Oomycota) on Ulva species (Chlorophyta) at different salinities vol.35, pp.1, 2017, https://doi.org/10.4490/algae.2020.35.2.25