References
- 박만구(2009). 수학교육에서 창의성의 개념 및 신장 방안, 수학교육, 23(3), 803-822.
- 박진형, 김동원(2016). 예 만들기 활동에 의한 창의적 사고 촉진 방안 연구, 수학교육학연구, 26(1), 1-22.
- 이경화(2015). 수학적 창의성: 수학적 창의성의 눈으로 본 수학교육, 서울: 경문사.
- 이정연, 이경화(2010). Simpson의 패러독스를 활용한 영재교육에서 창의성 발현 사례 분석, 수학교육학연구, 20(3), 203-219.
- Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instruction and the dialectics between technical and conceptual work. International Journal of Computers and Mathematical Learning, 7, 245-274. https://doi.org/10.1023/A:1022103903080
- Blomhoj, M. & Kjeldsen, T. H. (2006). Teaching mathematical modelling through project work - Experiences from an in-service course for upper secondary teachers, ZDM, 38(2), 163-177. https://doi.org/10.1007/BF02655887
- Blum, W. et al. (2002). ICMI study 14: Applications and modelilng in mathematics education - Discussion document. Educational Studies in Mathematics, 51, 149-171. https://doi.org/10.1023/A:1022435827400
- Blum, W. & Borromeo Ferri, R. (2009). Mathematical Modelling: Can It Be Taught And Learnt? Journal of Mathematical Modelling and Application, 1(1), 45-58.
- Chamberlin, S. A. & Moon, S. M. (2005). Model-eliciting activities as tool to develop and identify creativity gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 37-47. https://doi.org/10.4219/jsge-2005-393
- Chan, C, M. E. (2008). The use of mathematical modeling tasks to develop creativity, In E. Veikova, A. Andzans, (eds.), Promoting creativity for all students in mathematics education (pp. 207-216). Bulgaria: University of Rousse.
- Creswell, J. W. (2009). Research design: Qualitative, quantitative, and mixed methods approaches (3rd ed.). Thousand Oaks, CA: Sage Publications.
- Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics, Educational Studies in Mathematics, 61, 103-131. https://doi.org/10.1007/s10649-006-0400-z
- Galbraith, P. & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process, ZDM, 38(2), 143-162. https://doi.org/10.1007/BF02655886
- Guin, D. & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematics Learning, 3, 195-227.
- Kaiser, G. (2007). Modelling and modelling competencies in school, In P. Galbraith, W. Blum, S. Khan (eds.) Mathematical modelling education, engineering and economics (pp. 110-119). Chechester: Horwood.
- Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. (J. Kilpatrick & I. Wirszup, Eds.; J. Teller, Trans.). Chicago: University of Chicago Press. (Original work published 1968)
- Lesh, R. A., Cramer, K., Doerr, H., Post, T. & Zawojewski, J. S. (2003) Model development sequences. H. Doerr & R. A. Lesh (Eds) Beyond constructivism: Models and modeling perspectives on mathematics teaching, learning, and problem solving (pp. 35-58). Mahwah, NJ: Lawrence Erlbaum.
- Lesh, R., Middleton, J. A., Caylor, E. & Gupta, S. (2008). A science need: Designing tasks to engage students in modeling complex data, Educational Studies in Mathematics, 68, 113-130. https://doi.org/10.1007/s10649-008-9118-4
- Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students. (pp. 129-145). Rotterdam, the Netherlands: Sense Publisher.
- Mann, E. L. (2006). Creativity : The Essence of Mathematics, Journal for the Education of the Gifted, 30(2), 236-260. https://doi.org/10.4219/jeg-2006-264
- Nadjafikhah, M., Yaftian, N. & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia- Social and Behavioural Sciences, 31, 285-291. https://doi.org/10.1016/j.sbspro.2011.12.056
- Otte, M. (2011). Evolution, learning, and semiotics from a Peircean point of view, Educational Studies in Mathematics, 77, 313-329. https://doi.org/10.1007/s10649-011-9302-9
- Plucker, J. A. & Beghetto, R. A. (2004). Why creativity is domain general, why it looks domain specific, and why the distinction does not matter. In R. J. Sternberg, E. L. Grigorenko, & J. L. Singer (Eds.), Creativity: From potential to realization (pp. 153-167). Washington, DC: American Psychological Association.
- Reiter-Palmon, R., Illies, M. Y., Cross, L. K., Buboltz, C. & Nimps, T. (2009). Creativity and domain specificity: The effect of task type on multiple indexes of creative problemsolving. Psychology of aesthetics, creativity, and the arts, 3(2), 73-80. https://doi.org/10.1037/a0013410
- Sheffield, L. J. (2006). Developing mathematical promise and creativity. Research in Mathematics Education, 10(1), 1-11. https://doi.org/10.1080/14794800801915731
- Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem posing and problem solving. ZDM, 29(3), 75-80. https://doi.org/10.1007/s11858-997-0003-x
- Sriraman, B. (2005). Are giftedness & creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The Journal of Secondary Gifted Education, 17, 20-36. https://doi.org/10.4219/jsge-2005-389
- Sriraman, B., Yaftian, N. & Lee, K. H. (2011). Mathematical creativity and mathematics education, In K. H. Lee, B. Sriraman (eds.) The elements of creativity and giftedness in mathematics (pp. 119-130). Sense publishers.
- Stake, R. (1995). The art of case study research, Thousand Oaks: Sage Publications.
- Yuan, X. & Sriraman, B. (2011). An exploratory study of relationships between students' creativity and mathematical problem-posing abilities, In K. H. Lee, B. Sriraman (eds.) The elements of creativity and giftedness in mathematics (pp. 5-28). Sense publishers.