• Title/Summary/Keyword: 수학적 창의성

Search Result 73, Processing Time 0.085 seconds

A Study on the Measurement in Mathematical Creativity Using Multiple Solution Tasks (다양한 해결법이 있는 문제를 활용한 수학적 창의성 측정 방안 탐색)

  • Lee, Dae Hyun
    • School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Mathematical creativity in school mathematics is connected with problem solving. The purpose of this study was to analyse elementary students' the mathematical creativity using multiple solution tasks which required to solve a mathematical problem in different ways. For this research, I examined and analyzed the response to four multiple solution tasks according to the evaluation system of mathematical creativity which consisted of the factors of creativity(fluency, flexibility, originality). The finding showed that mathematical creativity was different between students with greater clarity. And mathematical creativity in tasks was different. So I questioned the possibility of analysis of students' the mathematical creativity in mathematical areas. According to the evaluation system of mathematical creativity of this research, mathematical creativity was proportional to the fluency. But the high fluency and flexibility was decreasing originality because it was easy for students to solve multiple solution tasks in the same ways. So, finding of this research can be considered to make the criterion in both originality in rare and mathematical aspects.

  • PDF

An Analytical Study on the Studies of Mathematical Creativity in Korea: Focusing on the Essence of Mathematical Creativity (창의성의 본질적 관점에서 본 수학적 창의성 교육의 국내 연구 동향)

  • Ha, Su Hyun;Lee, Kwang Ho;Sung, Chang Geun
    • School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.551-568
    • /
    • 2013
  • The purpose of this study is to verify the research trends on 101 articles about mathematical creativity published in domestic journals. The analysis criteria are as follows: (1)What kind of terms the articles use to refer to the creativity in mathematics education, (2)Whether the researchers conceptualize such the terms or not, (3)Whether the definitions are domain-specific or not, (4)What perspectives, categories and levels of the articles have on creativity. The results of this study show the following. First, numerous articles used 'mathematical creativity' in order to point to the creativity in mathematics education. Second, among the 101 selected articles, 60 (59.4%) provided an explicit definition of the mathematical creativity and 19(18.8%) provided an implicit definition. Among the 79 articles, only 43(54.4%) provided domain-specific definitions. Second, the percentage of articles preferring one perspective over the other 3 perspectives were similar. Third, the rate of articles which focused on press(environment) of all categories (person, process, product, press) was low. Fourth, regarding the levels of creativity, most articles were done on little-c creativity level, on the other hand, the articles having an interest in mini-creativity were very rare. Based on these results, necessities of explicit and domestic-specific definition, whole approach of mathematical creativity, and articles focusing on the mini-creativity level should be reported.

  • PDF

수학적 창의성의 평가에 대한 고찰 (II)

  • Kim, Bu-Yun;Kim, Cheol-Eon;Lee, Ji-Seong
    • Communications of Mathematical Education
    • /
    • v.19 no.1
    • /
    • pp.241-251
    • /
    • 2005
  • 수학적 창의성의 평가에 대한 연구에 있어서 이를 직접 다루기보다는 주로 일반적 창의성에 기반을 두고 창의성의 증진이나 육성 방안의 검증을 위한 검사 문항의 연구가 대부분이었다. 따라서 본고에서는 수학적 창의성이 일반적 창의성과 다르게 가지는 요인을 언급하고, 수학적 창의성의 평가에 대한 모델을 제안하고자 한다. 평가목표를 제시하고 수학적 창의성의 하위 구성요소인 창의적 사고력과 창의적 태도에 대한 검사가 일관되게 연결되어, 궁극적으로 수학적 창의성의 평가가 이루어져야 한다. 본고에서는 우선 창의적 사고력에 대한 평가에 관하여 선행연구를 고찰하고, 평가에서 개방형 문제가 중요함을 역설하면서 계속적인 문항 개발이 필요함을 강조하고자 한다.

  • PDF

The Effects of Non-intellective Factors and Process variables of the Gifted Middle School Students on their Mathematical Creativity (중학생 영재의 비지적특성과 가정의 과정변인이 수학적 창의성에 미치는 영향)

  • Song, Kyung-Ae
    • Journal of Gifted/Talented Education
    • /
    • v.15 no.2
    • /
    • pp.127-151
    • /
    • 2005
  • The purpose of this study is to examine the relationships between process variables, personality traits, intrinsic/extrinsic motivation and their mathematical creativity and how much these factors affect this creativity. These results show the major factor in mathematical creativity as being the gender difference between the gifted male and female middle school students. This also suggests that the education and living guidance of both gifted male and female students should take a different direction in relation to their gender differences in middle schools. In conclusion, all of the normal intellective and non-intellective factors, as well as home process variables, are the basic major data concerned with the effects of mathematical creativity. So, it is with all of this research that the proof for researching synthetically via a new creative research model can be offered.

Review on Instrumental Task and Program Characteristics for Measuring and Developing Mathematical Creativity (수학적 창의성 계발을 위한 과제와 수업 방향 탐색)

  • Sung, Chang-Geun;Park, Sung-Sun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.2
    • /
    • pp.253-267
    • /
    • 2012
  • In this paper, we primarily focus on the perspectives about creative process, which is how mathematical creativity emerged, as one aspect of mathematical creativity and then present a desirable task characteristic to measure and program characteristics to develop mathematical creativity. At first, we describe domain-generality perspective and domain-specificity perspective on creativity. The former regard divergent thinking skill as a key cognitive process embedded in creativity of various discipline domain involving language, science, mathematics, art and so on. In contrast the researchers supporting later perspective insist that the mechanism of creativity is different in each discipline. We understand that the issue on this two perspective effect on task and program to foster and measure creativity in mathematics education beyond theoretical discussion. And then, based on previous theoretical review, we draw a desirable characteristic on instruction program and task to facilitate and test mathematical creativity, and present an applicable task and instruction cases based on Geneplor model at the mathematics class in elementary school. In conclusion, divergent thinking is necessary but sufficient to develop mathematical creativity and need to consider various mathematical reasoning such as generalization, ion and mathematical knowledge.

  • PDF

Analysis of Research Trends in Mathematical Creativity Education (수학적 창의성 교육에 관한 연구 동향 분석)

  • Choi, Byoung-Hoon;Pang, Jeong-Suk
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.1
    • /
    • pp.197-215
    • /
    • 2012
  • The purpose of this study was to analyze the research trends of 114 papers about mathematical creativity published in domestic journals from 1997 to 2011 with regard to the years, objects, subjects, and methods of such research. The research of mathematical creativity education has been studied since 2000. The frequent objects in the research were non-human, middle and high school students, elementary students, gifted students, teachers (in-service and pre-service), and kindergarteners in order. The research on the teaching methods of mathematical creativity, the general study of mathematical creativity, or the measurement and the evaluation of mathematical creativity was active, whereas that of dealing with curricula and textbooks was rare. The qualitative research method was more frequently used than the quantitative research one. The mixed research method was hardly used. On the basis of these results, this paper shows how mathematical creativity was studied until now and gives some implications for the future research direction in mathematical creativity.

A Study on the Factors of Mathematical Creativity and Teaching and Learning Models to Enhance Mathematical Creativity (수학적 창의성의 요소와 창의성 개발을 위한 수업 모델 탐색)

  • Lee, Dae-Hyun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.1
    • /
    • pp.39-61
    • /
    • 2012
  • Mathematical creativity is essential in school mathematics and mathematics curriculum and ensures the growth of mathematical ability. Therefore mathematics educators try to develop students' creativity via mathematics education for a long time. In special, 2011 revised mathematics curriculum emphasizes mathematical creativity. Yet, it may seem like a vague characterization of mathematical creativity. Furthermore, it is needed to develop the methods for developing the mathematical creativity. So, the goal of this paper is to search for teaching and learning models for developing the mathematical creativity. For this, I discuss about issues of mathematical creativity and extract the factors of mathematical creativity. The factors of mathematical creativity are divided into cognitive factors, affective factors and attitude factors that become the factors of development of mathematical creativity in the mathematical instruction. And I develop 8-teaching and learning models for development of mathematical creativity based on the characters of mathematics and the most recent theories of mathematics education. These models make it crucial for students to develop the mathematical creativity and create the new mathematics in the future.

  • PDF

A Note on the Assesment of Mathematical Creativity (수학적 창의성의 평가방안에 대한 모색)

  • Kim, Boo-Yoon;Lee, Ji-Sung
    • Journal of the Korean School Mathematics Society
    • /
    • v.8 no.3
    • /
    • pp.327-341
    • /
    • 2005
  • Mathematical creativity should be assessed base on the general creativity considering the features of mathematics. In researching of the assessment of mathematical creativity, the direction should be matched with this view. In this paper, we focus on the creative thinking as cognitive aspect and the creative attitude as dispositional aspect in mathematics. And we have reviewed the various researches and have suggested the frame of the assessment of mathematical creativity.

  • PDF

A Study on the Development and Effect of Number-Operation Games for Mathematical Creativity of Gifted Students (초등 수학 영재의 창의성 향상을 위한 수 연산 게임 개발 및 적용에 관한 연구)

  • Kim, Yong Jik;Cho, Minshik;Lee, Kwangho
    • Education of Primary School Mathematics
    • /
    • v.19 no.4
    • /
    • pp.313-327
    • /
    • 2016
  • The purpose of this study is to develop the number-operation games and to analyze the effects of the games on mathematical creativity of gifted elementary students. We set up the basic direction and standard of mathematical gifted creativity program and developed the 10 periods games based on the mathematically gifted creative problem solving(MG-CPS) model. And, to find out the change of students' creativity, the test based on the developed program and one group pretest-posttest design was conducted on 20 gifted students. Analysis of data using Leikin's evaluation model of mathematical creativity with Leikin's scoring and categorization frame revealed that gifted students's creativity is improved via the number-operation games.

Reanalysis of Realistic Mathematics Education Perspective in Relation to Cultivation of Mathematical Creativity (현실적 수학교육 이론의 재음미 : 수학적 창의성 교육의 관점에서)

  • Lee, Kyeong-Hwa
    • Journal of Educational Research in Mathematics
    • /
    • v.26 no.1
    • /
    • pp.47-62
    • /
    • 2016
  • Cultivating mathematical creativity is one of the aims in the recently revised mathematics curricular. However, there have been lack of researches on how to nurture mathematical creativity for ordinary students. Perspective of Realistic Mathematics Education(RME), which pursues education of creative person as the ultimate goal of mathematics education, could be useful for developing principles and methods for cultivating mathematical creativity. This study reanalyzes RME from the points of view in mathematical creativity education. Major findings are followed. First, students should have opportunities for mathematical creation through mathematization, while seeking and creating certainty. Second, it is vital to begin with realistic contexts to guarantee mathematical creation by students, in which students can imagine or think. Third, students can create mathematics in realistic contexts by modelling. Fourth, students create the meaning of 'model of(MO)', which models the given context, the meaning of 'model for(MF)', which models formal mathematics. Then, students create MOs and MFs that are equivalent to the intial MO and MF given by textbook or teacher. Flexibility, fluency, and novelty could be employed to evaluate the MOs and the MFs created by students. Fifth, cultivation of mathematical creativity can be supported from development of local instructional theories by thought experiment, its application, and reflection. In conclusion, to employ the education model of cultivating mathematical creativity by RME drawn in this study could be reasonable when design mathematics lessons as well as mathematics curriculum to include mathematical creativity as one of goals.