Understanding Variables and Enhancing the Level of Generalization in Problem Solving Utilized Dynamic Geometry Environment

동적 기하 환경을 활용한 문제 해결 과정에서 변수 이해 및 일반화 수준 향상에 관한 사례연구

  • Received : 2017.01.10
  • Accepted : 2017.02.17
  • Published : 2017.02.28

Abstract

In this study we have analyzed processes of generalization in which students have geometrically solved cubic equation $x^3+ax=b$, regarding geometrical solution of cubic equation $x^3+4x=32$ as examples. The result of this research indicate that students could especially re-interpret the geometric solution of the given cubic equation via dynamically understanding the variables in dynamic geometry environment. Furthermore, participants could simultaneously re-interpret the given geometric solution and then present a different geometric solutions of $x^3+ax=b$, so that the level of generalization could be improved. In conclusion, the study could provide useful pedagogical implications in school mathematics that the dynamic geometry environment performs significant function as a means of students-centered exploration when understanding variables and enhancing the level of generalization in problem solving.

본 연구에서는 삼차방정식 $x^3+4x=32$의 기하학적 해법을 사례로 하여 삼차방정식 $x^3+ax=b$를 기하학적으로 해결하는 일반화 과정을 분석했다. 연구 결과, 동적 기하 환경을 활용한 문제 해결 과정에서 변수를 동적으로 이해하면서 이미 제시한 일반해를 재해석하고, 더 나아가 또 다른 일반해를 제시할 수 있게 되어 일반화의 수준이 향상되었다. 결론적으로, 문제 해결 과정에서 동적 기하 환경이 변수 이해 및 일반화 수준 향상과 관련해 학생 중심 탐구 수단으로서 유의미한 역할을 할 수 있다는 교수학적 시사점을 도출할 수 있었다.

Keywords

References

  1. 김남희(2004). 매개변수 개념의 교수-학습에 관한 연구. 수학교육학연구, 14(3), 305-325.
  2. 김성준(2004). 학교수학에 제시된 분석적 아이디어의 고찰. 교과교육학연구, 11(2), 499-515.
  3. 김화경.조한혁(2004). DGS 동적 기하에서의 새로운 함수적 관점의 정의. 한국수학교육학회 시리즈 A. 수학교육, 43(2), 177-186.
  4. 반은섭.신재홍.류희찬(2016). 오마르 카얌(Omar Khayyam)이 제시한 삼차방정식의 기하학적 해법의 교육적 활용. 학교수학, 18(3), 589-608.
  5. 우정호(2007). 학교수학의 교육적 기초(증보판 2판). 서울대학교출판부.
  6. 장혜원(2007). Clairaut의 <대수학 원론>에 나타난 대수지도 원리에 대한 분석. 수학교육학연구, 17(3), 253-270.
  7. 장혜원.강정기(2013). 기하 정리의 일반성 인식을 위한 동적기하환경의 활용. 수학교육학연구, 23(4), 585-604.
  8. 조영주.김경미(2010). 컴퓨터 대수 환경에서 매개변수 개념에 대한 고등학생의 이해에 관한 사례 연구. 한국수학교육학회 시리즈 E. 수학교육논문집, 24(4), 949-974.
  9. 지영명.유연주(2014). 매개변수의 인식과 오류에 대한 연구. 학교수학, 16(4), 803-825.
  10. Akgun, L., & Ozdemir, M. E. (2006). Students' understanding of the variable as general number and unknown: A case study. The Teaching of Mathematics, 9(1), 45-51.
  11. Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241. https://doi.org/10.1023/A:1024312321077
  12. Barbosa, A., Palhares, P., & Vale, I. (2007). Patterns and generalization: The influence of visual strategies. Proceedings of the 5th Congress of the European Society for Research in Mathematics Education, 844-851.
  13. Bayazit, I., & Aksoy, Y. (2010). Connecting representations and mathematical ideas with GeoGebra. GeoGebra International Journal of Romania, 1(1), 93-106.
  14. Becker, J. R., & Rivera, F. (2005). Generalization strategies of beginning high school algebra students. Proceedings of the 29th PME Conference, vol 4, 121-128.
  15. Bills, L., & Rowland, T. (1999). Examples, generalisation and proof. In L. Brown (Ed.), Making meaning in mathematics. Advances in mathematics education (vol 1, pp. 103-116). York, UK: QED.
  16. Connor, M. B. (1956). A historical survey of methods of solving cubic equations. Unpublished master's dissertation, University of Richmond, Virginia.
  17. Davydov, V. V. (1990). Type of generalization in instruction: Logical and psychological problems in the structuring of school curricula (translated by J. Teller). In J. Kilpatrick (Ed.), Soviet studies in mathematics education vol 2. Reston, VA: National Council of Teachers of Mathematics. (원저는 1972년에 출판).
  18. De Giessen, C. (2002). The visualisation of parameters. In M. Borovcnik & H. Kautschitsch (Eds.), Technology in mathematics teaching (Proceedings of ICTMT5 in Klagenfurt 2001) (pp. 97-100). Vienna: obv&hpt Verlagsgesellschaft.
  19. Dienes, Z. P. (1971). Building up mathematics (Fourth Edition). London: Hutchinson.
  20. Dindyal, J. (2004). Algebraic thinking in geometry at high school level: Students' use of variables and unknowns. In I. Putt, R. Faragher & M. McLean (Eds.), Mathematics education for the third millennium: Towards 2010 (Proceedings of the 27th annual conference of the Mathematics Education Research Group of Australasia, Townsville) (pp. 183-190). Sydney: MERGA, Inc.
  21. Dindyal, J. (2007). The need for an inclusive framework for students' thinking in school geometry. The Montana Mathematics Enthusiast, 4(1), 73-83.
  22. Dorfler, W. (1991). Forms and means of generalization in mathematics. In A. J. Bishop (Ed.), Mathematical knowledge: Its growth through teaching (pp. 63-85). Dordrecht, Netherlands: Kluwer.
  23. Dreyfus, T. (1991). Advanced mathematical thinking processes. In. D. Tall (Ed.), Advanced mathematical thinking (pp. 25-41). Boston: Kluwer.
  24. Drijvers, P. (2001). The concept of parameter in a computer algebra environment. Proceedings of 25th PME Conference, vol 2, 385-392.
  25. Drijvers, P. (2003). Learning algebra in a computer algebra environment. Design research on the understanding of concept of parameter. Unpublished doctoral dissertation, Freudenthal Institute, Utrecht, Netherlands.
  26. Goldin, G. A. (2002). Representation in mathematical problem solving and learning. In L. D. English (Ed.), Handbook of international research in mathematics education (pp. 197-218). Mahwah, NJ: Lawrence Erlbaum Associates.
  27. Hershkowitz, R., Schwarz, B. B., & Dreyfus, T. (2001). Abstraction in context: Epistemic actions. Journal of Research in Mathematics Education, 32(2), 195-222. https://doi.org/10.2307/749673
  28. Hohenwarter, M. (2002). GeoGebra-Ein Software system für dynamische Geometrie und Algebra der Ebene. Unpublished master's dissertation, University of Salzburg, Austria.
  29. Hohenwarter, M., & Jones, K. (2007). Ways of linking geometry and Algebra: the case of GeoGebra. In D. Kuchemann (Ed.), Proceedings of the British Society for Research into Learning Mathematics, 27(3), 126-131.
  30. Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4), 332-340. https://doi.org/10.3758/BF03197035
  31. Hoyles, C., Noss, R., & Pozzi, S. (1999). Mathematizing in practice. In C. Hoyles, C. Morgan, & G. Woodhouse (Eds.), Rethinking the mathematics curriculum (pp. 48-62). London: Falmer Press.
  32. Hoyles, C., & Jones, K. (1998). Proof in dynamic geometry contexts. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century(ICME Study 8) (pp. 121-128). Dordrecht: Kluwer.
  33. John, K. (2002). Research on the use of dynamic geometry software. MicroMath, 18(3), 18-20.
  34. John, K. (2011). The value of learning geometry with ICT: lessons from innovative educational research. In A. Oldknow., & C. Knights (Eds.), Mathematics Education with Digital Technology (chapter 5, pp. 39-45). London: Continuum.
  35. Kaput, J. J., Blanton, M. L., & Moreno, L. (2008). Algebra from a symbolization point of view. In J. J. Kaput, D. W. Carraher, & M. L. Blanton (Eds.), Algebra in the early grades (pp. 19-55). New York, NY: Lawrence Erlbaum.
  36. Khayyam, O. (2008). An essay by the uniquely wise ABEL FATH BIN AL-KHAYYAM on algebra and equations. Translated by R. Khalil & Reviewed by W. Deeb. UK: RG1 4QS.
  37. Mardia, K. V. (1999). Omar Khayyam, Rene Descartes and solutions to algebraic equations. Presented to Omar Khayyam Club, London. Retrieved from http://www1.maths.leeds.ac.uk/-sta6kvm/omar.pdf.
  38. Mason, J. H. (2002). Generalisation and algebra: Exploiting children's powers. In L. Haggerty (Ed.), Aspects of teaching secondary mathematics: Perspectives on practice (pp.105-120). London: RoutledgeFalmer.
  39. Merriam, S. B. (1998). Qualitative research and case study applications in education. San Francisco, CA: Jossey-Bass.
  40. Mitchelmore, M. C. (2002). The role of abstraction and generalisation in the development of mathematical knowledge. In D. Edge, & B. H. Yeap (Eds.), Mathematics education for knowledge- based era (Proceedings of the 2nd East Asia Regional Conference on Mathematics Education and the 9th Southeast Asian Conference on Mathematics Education) (pp. 157-167). Singapore: Association of Mathematics Educators.
  41. Polya, G. (2003). 수학과 개연 추론 (I권: 수학에서의 귀납과 유추)(이만근, 최영기, 전병기, 홍갑주, 김민정 역). 서울: 교우사. (원저는 1968년에 출판).
  42. Polya, G. (2005). 어떻게 문제를 풀 것인가? - 수학적 사고와 방법-(우정호 역). 서울: 경문사.(원저는 1956년에 출판).
  43. Schoenfeld, A. H., & Arcavi, A. (1988). On the meaning of variable. Mathematics Teacher, 81(6), 420-427.
  44. Skemp, R. (1986). The psychology of learning mathematics (2nd ed). Harmondsworth, England: Penguin.
  45. Sriraman, B. (2004). Reflective abstraction, uniframes and formulation of generalizations. Journal of Mathematical Behavior, 23(2), 205-222. https://doi.org/10.1016/j.jmathb.2004.03.005
  46. Tall, D. (2011). Looking for the bigger picture. For the Learning of Mathematics., 31(2), 17-18.
  47. Ursini, S., & Trigueros, M. (2004). How do high school students interpret parameters in algebra. Proceedings of the 28th PME Conference, vol 4, 361-368.
  48. Usiskin, Z. (1988). Conceptions of school algebra and uses of variable. In A. F. Coxford & A. P. Schulte (Eds.), The ideas of algebra, K-12 (pp. 8-19). Reston, VA: The National Council of Teachers of Mathematics.
  49. Wagner, S., & Kieran, C. (Eds.). (1989). Research issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers of Mathematics.
  50. White, P., & Mitchelmore, M. (1999). Learning mathematics: A new look at generalisation and abstraction. Referred paper at the combined conference of the Australian and New Zealand Associations for Research in Education, Australia.
  51. Yilmaz, R., Argun, Z., & Keskin, M. (2009). What is the role of visualization in generalization processes: The case of preservice secondary mathematics teachers. Humanity & Social Sciences Journal, 4(2), 130-137.
  52. Zazkis, R., Liljedahl, P., & Chernoff, E. J. (2007). The role of examples in forming and refuting generalizations. ZDM Mathematics Education, 40(1), 131-141.