References
- Basseville, M. and Nikiforov, I. V. (1993). Detection of Abrupt Changes: Theory and Application (Vol. 104), Prentice Hall, Englewood Cliffs.
- Carlstein, E., Muller, H.-G., and Siegmund, D. (1994). Change-point Problems, Institute of Mathematical Statistics, California.
- Chen, J. and Gupta, A. K. (2001). On change point detection and estimation. Communications in Statistics-Simulation and Computation, 30, 665-697. https://doi.org/10.1081/SAC-100105085
- Csorgo, M. and Horvath, L. (1997). Limit Theorems in Change-Point Analysis, John Wiley & Sons, New York.
- Harchaoui, Z. and Levy-Leduc, C. (2010). Multiple change-point estimation with a total variation penalty. Journal of the American Statistical Association, 105, 1480-1493. https://doi.org/10.1198/jasa.2010.tm09181
- Jang, W., Lim, J., Lazar, N. A., Loh, J. M., and Yu, D. (2015). Some properties of generalized fused lasso and its applications to high dimensional data. Journal of the Korean Statistical Society, 44, 352-365. https://doi.org/10.1016/j.jkss.2014.10.002
-
Johnson, N. A. (2013). A dynamic programming algorithm for the fused Lasso and
$L_0$ -segmentation. Journal of Computational and Graphical Statistics, 22, 246-260. https://doi.org/10.1080/10618600.2012.681238 - Kotz, S., Read, C. B., Balakrishnan, N., Vidakovic, B., and Johnson, N. L. (Eds.) (2006). Encyclopedia of Statistical Sciences (2nd ed.), John Wiley & Sons, NJ.
- Lim, E., Hahn, K. S., Lim, J., Kim, M., Park, J., and Yoon, J. (2012). Statistical properties of news coverage data. Communications for Statistical Applications and Methods, 19, 771-780. https://doi.org/10.5351/CKSS.2012.19.6.771
-
Lin, K., Sharpnack, J., Rinaldo, A., and Tibshirani, R. J. (2016). Approximate recovery in changepoint Problems, from
$\ell$ 2 estimation error rates, arXiv preprint, arXiv:1606.06746. - Qian, J. and Jia, J. (2016). On stepwise pattern recovery of the fused Lasso. Computational Statistics and Data Analysis, 94, 221-237. https://doi.org/10.1016/j.csda.2015.08.013
- Rinaldo, A. (2009). Properties and refinements of the fused lasso. The Annals of Statistics, 37, 2922-2952. https://doi.org/10.1214/08-AOS665
- Rojas, C. R. and Wahlberg, B. (2015). How to monitor and mitigate stair-casing in L1 trend filtering, arXiv preprint, arXiv:1412.0607v1.
- Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., and Knight, K. (2005). Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67, 91-108. https://doi.org/10.1111/j.1467-9868.2005.00490.x
- Tibshirani, R. and Wang, P. (2008). Spatial smoothing and hot spot detection for CGH data using the fused lasso. Biostatistics, 9, 18-29. https://doi.org/10.1093/biostatistics/kxm013
- Ye, G.-B. and Xie, X. (2011). Split Bregman method for large scale fused Lasso. Computational Statistics and Data Analysis, 55, 1552-1569. https://doi.org/10.1016/j.csda.2010.10.021
- Yu, D., Won, J., Lee, T., Lim, J., and Yoon, S. (2015a). High-dimensional fused lasso regression using majorization-minimization and parallel processing. Journal of Computational and Graphical Statistics, 24, 121-153. https://doi.org/10.1080/10618600.2013.878662
- Yu, D., Lee, S. J., Lee, W. J., Kim, S. C., Lim, J., and Kwon, S. W. (2015b). Classification of spectral data using fused lasso logistic regression. Chemometrics and Intelligent Laboratory Systems, 142, 70-77. https://doi.org/10.1016/j.chemolab.2015.01.006
- Zhao, P. and Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine Learning Research, 7, 2541-2563.