DOI QR코드

DOI QR Code

Statistical methods for modelling functional neuro-connectivity

뇌기능 연결성 모델링을 위한 통계적 방법

  • Kim, Sung-Ho (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology) ;
  • Park, Chang-Hyun (Ewha Brain Institute, Ewha Womans University)
  • 김성호 (한국과학기술원 수리과학과) ;
  • 박창현 (이화여자대학교 뇌융합과학연구원)
  • Received : 2016.09.20
  • Accepted : 2016.10.05
  • Published : 2016.10.31

Abstract

Functional neuro-connectivity is one of the main issues in brain science in the sense that it is closely related to neurodynamics in the brain. In the paper, we choose fMRI as a main form of response data to brain activity due to its high resolution. We review methods for analyzing functional neuro-connectivity assuming that measurements are made on physiological responses to neuron activation. This means that we deal with a state-space and measurement model, where the state-space model is assumed to represent neurodynamics. Analysis methods and their interpretation should vary subject to what was measured. We included analysis results of real fMRI data by applying a high-dimensional autoregressive model, which indicated that different neurodynamics were required for solving different types of geometric problems.

뇌기능 연결성 문제는 뇌의 신경역학적 현상과 밀접한 관련이 있다는 의미에서 뇌과학에서 주요 연구주제이다. 본 논문에서는 기능적 자기공명영상(fMRI)자료를 뇌활동에 대한 반응 자료의 주요 형태로써 선택하였는데, 이 fMRI자료는 높은 해상도 때문에 뇌과학 연구에서 선호되는 자료 형태이다. 뇌활동에 대한 생리학적 반응을 측정해서 자료로 사용한다는 전제하에서 뇌의 기능적 연결성을 분석하는 방법들을 고찰하였다. 여기서의 전제란 상태공간 및 측정 모형을 다룬다는것을 의미하는데, 여기서 상태공간 모형은 뇌신경역학을 표현한다고 가정한다. 뇌기능 영상자료의 분석은 무엇을 측정하였느냐에 따라서 분석방법과 그 해석이 조금씩 달라진다. 실제 fMRI자료를 고차원 자기회귀모형을 적용해서 분석한 결과를 논문에 포함하였는데, 이 결과를 통해서 서로 다른 도형문제를 푸는데 서로 다른 뇌신경 역학관계가 요구된다는 것을 엿볼 수 있었다.

Keywords

References

  1. Absher, J. R. and Benson, D. F. (1993). Disconnection syndromes: an overview of Geschwind's contributions. Neurology, 43, 862-867. https://doi.org/10.1212/WNL.43.5.862
  2. Astolfi, L., Cincotti, F., Mattia, D., Salinari, S., Babiloni, C., Basilisco, A., Rossini, P. M., Ding, L., Ni, Y., He, B., Marciani, M. G., and Babiloni., F. (2004). Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Magnetic Resonance Imaging, 22, 1457-1470. https://doi.org/10.1016/j.mri.2004.10.006
  3. Buchel, C., Friston, K. J. (1997). Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. Cerebral Cortex, 7, 768-778. https://doi.org/10.1093/cercor/7.8.768
  4. Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186-198. https://doi.org/10.1038/nrn2575
  5. Churchland, P. S. and Sejnowski, T. J. (1998). Perspectives on cognitive neuroscience. Science, 242, 741-745.
  6. Daunizeau, J., Kiebel, S. J., and Friston, K. J. (2009). Dynamic causal modelling of distributed electromagnetic responses. Neuroimage, 47, 590-601. https://doi.org/10.1016/j.neuroimage.2009.04.062
  7. Deshpande, G., Sathian, K., and Hu, X. (2010). Assessing and compensating for zero-lag correlation effects in time-lagged Granger causality analysis of FMRI. IEEE Transactions on Biomedical Engineering, 57, 1446-1456. https://doi.org/10.1109/TBME.2009.2037808
  8. Friston, K. J. (2005). Models of brain function in neuroimaging. Annual Review of Psychology, 56, 57-87. https://doi.org/10.1146/annurev.psych.56.091103.070311
  9. Friston, K. J. (2011). Functional and effective connectivity: a review. Brain Connectivity, 1, 13-36. https://doi.org/10.1089/brain.2011.0008
  10. Friston, K. J., Bastos, A. M., Oswal, A., van Wijk, B., Richter, C., and Litvak, V. (2014). Granger causality revisited. NeuroImage, 101, 796-808. https://doi.org/10.1016/j.neuroimage.2014.06.062
  11. Friston, K. J., Harrison, L., and Penny, W. (2003). Dynamic causal modelling. NeuroImage, 19, 1273-1302. https://doi.org/10.1016/S1053-8119(03)00202-7
  12. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J. B., Frith, C. D., and Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2, 189-210.
  13. Genovese, C. R., Lazar, N. A., and Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage, 15, 870-878. https://doi.org/10.1006/nimg.2001.1037
  14. Goebel, R., Roebroeck, A., Kim, D. S., and Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. Magnetic Resonance Imaging, 21, 1251-1261. https://doi.org/10.1016/j.mri.2003.08.026
  15. Goltz, F. (1881). Transactions of the 7th International Medical Congress (MacCormac ed.), I, 218-228, JW Kolkmann, London.
  16. Haxby, J. V., Guntupalli, J. S., Connolly, A. C., Halchenko, Y. O., Conroy, B. R., Gobbini, M. I., Hanke, M., and Ramadge, P. J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron, 72, 404-416. https://doi.org/10.1016/j.neuron.2011.08.026
  17. Huettel, S. A., Song, A. W., and McCarthy, G. (2009). Functional Magnetic Resonance Imaging (Vol. 1), Sinauer Associates, Sunderland.
  18. Kim, J., Zhu, W., Chang, L., Bentlerm P. M., and Ernst, T. (2006). Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data. Human Brain Mapping, 28, 85-93.
  19. Lee, N., Choi, H., and Kim, S.-H. (2016a). Bayes shrinkage estimation for high-dimensional VAR models with scale mixture of normal distributions for noise. Computational Statistics & Data Analysis, 101, 250-276. https://doi.org/10.1016/j.csda.2016.03.007
  20. Lee, N., Kim, A.-Y., Park, C.-H., and Kim, S.-H. (2016b). An Improvement on Local FDR Analysis Applied to Functional MRI Data. Journal of Neuroscience Methods, 267, 115-125. https://doi.org/10.1016/j.jneumeth.2016.04.013
  21. Logothetis, N. K. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869-878. https://doi.org/10.1038/nature06976
  22. Marreiros, A. C., Kiebel, S. J., and Friston, K. J. (2008). Dynamic causal modelling for fMRI: A two-state model. NeuroImage, 39, 269-278. https://doi.org/10.1016/j.neuroimage.2007.08.019
  23. Marrelec, G., Kim, J., Doyon, J., and Horwitz, B. (2009). Large-scale neural model validation of partial correlation analysis for effective connectivity investigation in functional MRI. Human Brain Mapping, 30, 941-950. https://doi.org/10.1002/hbm.20555
  24. McIntosh, A. and Gonzales-Lima, F.(1994). Structural equation modeling and its application to network analysis in functional brain imaging. Human Brain Mapping, 2, 2-22. https://doi.org/10.1002/hbm.460020104
  25. Ni, S. and Sun, D. (2005). Bayesian estimates for vector autoregressive models. Journal of Business and Economic Statistics, 23, 105-117. https://doi.org/10.1198/073500104000000622
  26. Nichols, T. and Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistical Methods in Medical Research, 12, 419-446. https://doi.org/10.1191/0962280203sm341ra
  27. Opgen-Rhein, R. and Strimmer, K. (2007). Learning causal networks from systems biology time course data: an effective model selection procedure for the vector autoregressive process. BMC Bioinform, 8, S3.
  28. Penny, W. D., Stephan, K. E., Mechelli, A., and Friston, K. J. (2004). Modelling functional integration: a comparison of structural equation and dynamic causal and models. NeuroImage, 23, 264-274. https://doi.org/10.1016/j.neuroimage.2004.07.041
  29. Schafer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, 32.
  30. Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., Ramsey, J. D., and Woolrich, M. W. (2011). Network modelling methods for FMRI. NeuroImage, 54, 875-891. https://doi.org/10.1016/j.neuroimage.2010.08.063
  31. Staum, M. (1995). Physiognomy and phrenology at the Paris Athenee. Journal of the History of Ideas, 56, 443-462. https://doi.org/10.2307/2710035
  32. Stephan, K. E. and Friston, K. J. (2011). Analyzing effective connectivity with fMRI. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 446-459.
  33. Strimmer, K. (2008). ftrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics, 24, 1461-1462. https://doi.org/10.1093/bioinformatics/btn209
  34. Zhou, D., Thompson, W. K., and Siegle, G. (2009). MATLAB toolbox for functional connectivity. Neuroimage, 47, 1590-1607. https://doi.org/10.1016/j.neuroimage.2009.05.089