References
- Al Shawa, O., de Felice, G., Mauro, A. and Sorrentino, L. (2012), "Out-of-plane seismic behaviour of rocking masonry walls", Earthq. Eng. Struct. D., 41(5), 949-968. https://doi.org/10.1002/eqe.1168
- Ascione, L., de Felice, G. and De Santis S. (2015), "A qualification method for externally bonded Fibre Reinforced Cementitious Matrix (FRCM) strengthening systems", Compos. Part. B-Eng., 78, 497-506. https://doi.org/10.1016/j.compositesb.2015.03.079
- Beraldin, J.A., Latouche, C., El-Hakim, S.F. and Filiatrault, A. (2004), "Applications of photo-grammetric and computer vision techniques in shake table testing", Proceedings of the 13th World Conference on Earthquake Engineering (13WCEE), Vancouver, BC, Canada.
- Calderini, C., Lagomarsino, S., Rossi, M., De Canio, G., Mongelli, M. and Roselli, I. (2015), "Shaking table tests of an arch-pillars system and design of strengthening by the use of tie-rods", Bull. Earthq. Eng., 13(1), 279-297. https://doi.org/10.1007/s10518-014-9678-x
- Candan, C. and Inan, H. (2014), "A unified framework for derivation and implementation of Savitzky-Golay filters", Signal Process., 104, 203-211. https://doi.org/10.1016/j.sigpro.2014.04.016
- De Canio, G., Mongelli, M. and Roselli, I. (2013), "3D motion capture application to seismic tests at ENEA Casaccia research center. 3DVision system and DySCo virtual lab", Wit. Trans. Built. Env., 134, 803-814.
- de Felice, G., De Santis, S., Garmendia, L., Ghiassi, B., Larrinaga, P., Lourenco, P.B., Oliveira, D.V., Paolacci, F. and Papanicolaou, C.G. (2014), "Mortar-based systems for externally bonded strengthening of masonry", Mater. Struct., 47(12), 2021-2037. https://doi.org/10.1617/s11527-014-0360-1
- De Santis, S. and de Felice, G. (2015a), "Tensile behaviour of mortar-based composites for externally bonded reinforcement systems", Compos. Part. B-Eng., 68, 401-413. https://doi.org/10.1016/j.compositesb.2014.09.011
- De Santis, S. and de Felice, G. (2015b), "Steel reinforced grout systems for the strengthening of masonry structures", Compos. Struct., 134, 533-548. https://doi.org/10.1016/j.compstruct.2015.08.094
- De Santis, S., De Canio, G., de Felice, G., Malena, M., Mongelli, M. and Roselli, I. (2015), "Seismic performance of masonry walls retrofitted with steel reinforced grout", Earthq. Eng. Struct. Dyn., doi: 10.1002/eqe.2625.
- Elenas, A. (2013), "Intensity parameters as damage potential descriptors of earthquakes", Compos. Meth. Appl. Sci., 22, 327-334.
- Gallipoli, M.R., Mucciarelli, M. and Vona, M. (2009), "Empirical estimate of fundamental frequencies and damping for Italian buildings", Earthq. Eng. Struct. Dyn., 38(8), 973-988. https://doi.org/10.1002/eqe.878
- Hartley, R. and Zisserman, A. (2003), Multiple View Geometry in Computer Vision, Cambridge University Press, UK.
- Lunghi, F. Pavese, A., Peloso, S., Lanese, I. and Silvestri, D. (2012), "Computer vision system for monitoring in dynamic structural testing", Geotech. Geol. Earthq., 22, 159-176. https://doi.org/10.1007/978-94-007-1977-4_9
- Lyness, J.N. and Moler, C.B. (1967), "Numerical differentiation of analytic functions", SIAM J. Numer. Anal., 4(2), 202-210. https://doi.org/10.1137/0704019
- Maia, N. and Silva, J. (1998), Theoretical and Experimental Modal Analysis, Research Studies Press, Baldock, UK.
- Moeslund, T.B. and Granum, E. (2001), "A survey of computer vision-based human motion capture", Comput. Vis. Image. Und., 81(3), 231-268. https://doi.org/10.1006/cviu.2000.0897
- Razavizadeh, A., Ghiassi, B. and Oliveira, D.V. (2014), "Bond behavior of SRG-strengthened masonry units: Testing and numerical modeling", Constr. Build. Mater., 64, 387-397. https://doi.org/10.1016/j.conbuildmat.2014.04.070
- Roselli, I., Mongelli, M., Tati, A. and De Canio, G. (2015), "Analysis of 3D motion data from shaking table tests on a scaled model of Hagia Irene, Istanbul", Key Eng. Mater., 624, 66-73.
- Savitzky, A. and Golay, M.J.E. (1964), "Smoothing and differentiation of data by simplified least squares procedures", Anal. Chem., 36(8), 1627-1639. https://doi.org/10.1021/ac60214a047
- Stephen, G.A., Brownjohn, J.M.W. and Taylor, C.A. (1993), "Measurement of static and dynamic displacement from visual monitoring of the Humber Bridge", Eng. Struct., 15(3), 197-208. https://doi.org/10.1016/0141-0296(93)90054-8
- Valluzzi, M.R., Modena, C. and de Felice, G. (2014), "Current practice and open issues in strengthening historical buildings with composites", Mater. Struct., 47(12), 1971-1985. https://doi.org/10.1617/s11527-014-0359-7
- Vicon iQ System Reference-Volume II (2006), Motion capture production and control software, Oxford.
- Ye, L., Ma, Q., Miao, Z., Guan, H. and Zhuge, Y. (2013), "Numerical and comparative study of earthquake intensity indices in seismic analysis", Struct. Des. Tall. Spec., 22(4), 362-381. https://doi.org/10.1002/tal.693
- Yoneyama, S., Kitagawa, A., Iwata, S., Tani, K. and Kikuta, H. (2007), "Bridge deflection measurement using digital image correlation", Exp. Techniq., 31(1), 34-40. https://doi.org/10.1111/j.1747-1567.2006.00132.x
- Webster, J.G. (1999), The Measurement, Instrumentation and Sensors Handbook, CRC Press-IEEE Press.
Cited by
- Application of Digital Image Correlation to composite reinforcements testing vol.160, 2017, https://doi.org/10.1016/j.compstruct.2016.10.096
- Quasi real-time FEM calibration by 3D displacement measurements of large shaking table tests using HPC resources 2016, https://doi.org/10.1016/j.advengsoft.2016.07.005
- Full-scale tests on masonry vaults strengthened with Steel Reinforced Grout vol.141, 2018, https://doi.org/10.1016/j.compositesb.2017.12.023
- Test methods for Textile Reinforced Mortar systems vol.127, 2017, https://doi.org/10.1016/j.compositesb.2017.03.016
- Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems vol.127, 2017, https://doi.org/10.1016/j.compositesb.2017.03.052
- Retrofitting Masonry Vaults with Basalt Textile Reinforced Mortar vol.747, 2017, https://doi.org/10.4028/www.scientific.net/KEM.747.250
- Methods and Challenges for the Seismic Assessment of Historic Masonry Structures 2016, https://doi.org/10.1080/15583058.2016.1238976
- Experimental analysis on tensile and bond properties of PBO and aramid fabric reinforced cementitious matrix for strengthening masonry structures vol.127, 2017, https://doi.org/10.1016/j.compositesb.2017.05.048
- Mutual validation between different modal analysis techniques for dynamic identification of the so-called Temple of Minerva Medica, Rome vol.364, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/364/1/012004
- A non-destructive testing methodology for damage assessment of reinforced concrete buildings after seismic events vol.163, pp.None, 2016, https://doi.org/10.1016/j.engstruct.2018.02.053
- Shake Table Tests on a Masonry Structure Retrofitted with Composite Reinforced Mortar vol.817, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/kem.817.342
- Measurement of Dynamic Responses from Large Structural Tests by Analyzing Non-Synchronized Videos vol.19, pp.16, 2016, https://doi.org/10.3390/s19163520
- Distinct Element Modelling of Masonry Walls under Out-Of-Plane Seismic Loading vol.13, pp.7, 2016, https://doi.org/10.1080/15583058.2019.1615152
- Out-of-plane seismic retrofitting of masonry walls with Textile Reinforced Mortar composites vol.17, pp.11, 2016, https://doi.org/10.1007/s10518-019-00701-5
- Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.877
- A Complementary Filter Design on SE(3) to Identify Micro-Motions during 3D Motion Tracking vol.20, pp.20, 2016, https://doi.org/10.3390/s20205864
- Low-impact techniques for seismic strengthening fair faced masonry walls vol.307, pp.None, 2016, https://doi.org/10.1016/j.conbuildmat.2021.124962