• Title/Summary/Keyword: passive markers

Search Result 16, Processing Time 0.032 seconds

A Contrastive Study on Korean and Chinese Passive Expression: Centered on Korean Act Subject Marks and Chinese Passive Marks (한·중 피동 표현 대조 연구 - 한국어 행위주 표지와 중국어 피동 표지 대비 중심으로 -)

  • Yu, Tong-Tong;Kim, In-Kyun
    • Cross-Cultural Studies
    • /
    • v.47
    • /
    • pp.217-240
    • /
    • 2017
  • This paper is based on a comparative analysis of the Korean act subject marks '-에게(한테), -로, -에' and Chinese passive marks '被[$b{\grave{e}}i$]/?[$r{\grave{a}}ng$]/叫[$ji{\grave{a}}o$]/?[$g{\check{e}}i$]'. Each distribution's aspects and characteristics were examined and corresponding relationships were analyzed by comparison of these forms. The method of this comparative analysis focused on three aspects such as tangible characteristics of the two languages, selective restrictions on the 'act subject' or 'passive subject' in the passive expression, and constraints on the use of the act subject (passive) marks in the Korean passive expression by '받다'. In this comparative analysis Korean act subject markers '-에게(한테), -로, -에' and Chinese passive markers '被/?/叫/?' are always as an adverb in passive expression in combination with the act subject. Despite this common point, some differences were revealed relative to the use of the two languages. First, we reveal that the 'act subject' and the conjoined manner follow the passive expression according to characteristics of the two languages. In addition, the act subject marks of Korean passive expressions '에게/한테, -에/로' only serve as an investigative role. They are limited only to [${\pm}animate$] of the act subject. But Chinese passive markers '被/?/叫/?' are often restricted by [${\pm}animate$] of passive subject, existence and non-existence of act subject. In the Korean passive expression by '받다', it is used as act subject marks '에게/한테, -에/로' but the Chinese passive marks are restricted by the meaning of lexical items in a sentence.

Motion analysis system using image processing (화상처리를 이용한 동작분석 시스템에 관한 연구)

  • 박경수;반영환;이안재;임창주;오인석;이현철
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.71-75
    • /
    • 1997
  • This paper presents the development of videobased 3-dimensional tracking system. Measurement of human motion is important in the application of ertonomics. The system uses advanced direct video measurement technology. Passive retro-reflecting markers are attached to a subject and movements of markers are observed by two CCD cameras. Infrared light emitted near the CCD cameras is reflected by the markers and is detected by the cameras. The images are captured by Samsung MVB302 board and the centers of markers are calculated by DSP program. The positions of markers are transferred from MVB02 board to the computer through AT bus. The computer then tracks the position of each marker and saves the data. This system has dynamic accuracy with 0.7% average error and 4.2% maximum error, and the sampling rate to 6 .approx. 10 Hz, and this system can analyse the trajectory and speed of the marker. The results of this study can be used for operator's motion analysis, task analysis, and hand movement characteristic analysis.

  • PDF

Video-based 3-dimensional tracking system (영상을 이용한 3차원 위치 추적 시스템 개발1)

  • 박경수;반영환;이안재;임창주
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.160-165
    • /
    • 1996
  • This paper presents the development of video-based 3-dimensional tracking system. Measurement of human motion is important in the application of ergonomics. The system uses advanced direct video measurement technology. Passive retro-reflecting markers are attached to a subject and movements of markers are observed by two CCD cameras. Infrared light emitted near the CCD cameras is reflected by the markers and is detected by the cameras. The image ae captured by Samsung MVBO2 board and the center of markers is calculated by DSP program. The position of markers are transferred from MVB02 board to the computer through AT bus. The computer then tracks the position of each marker and saves the data. This system has dynamic accuracy with 1% error and the sampling rate to 6-10 Hz, and can analyse the trajectory and speed of the marker. The results of this study can be used for operators motion analysis, task analysis, and hand movement characteristic analysis.

  • PDF

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

3D Rigid Body Tracking Algorithm Using 2D Passive Marker Image (2D 패시브마커 영상을 이용한 3차원 리지드 바디 추적 알고리즘)

  • Park, Byung-Seo;Kim, Dong-Wook;Seo, Young-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.587-588
    • /
    • 2022
  • In this paper, we propose a rigid body tracking method in 3D space using 2D passive marker images from multiple motion capture cameras. First, a calibration process using a chess board is performed to obtain the internal variables of individual cameras, and in the second calibration process, the triangular structure with three markers is moved so that all cameras can observe it, and then the accumulated data for each frame is calculated. Correction and update of relative position information between cameras. After that, the three-dimensional coordinates of the three markers were restored through the process of converting the coordinate system of each camera into the 3D world coordinate system, the distance between each marker was calculated, and the difference with the actual distance was compared. As a result, an error within an average of 2mm was measured.

  • PDF

The Examination of Reliability of Lower Limb Joint Angles with Free Software ImageJ

  • Kim, Heung Youl
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.583-595
    • /
    • 2015
  • Objective: The purpose of this study was to determine the reliability of lower limb joint angles computed with the software ImageJ during jumping movements. Background: Kinematics is the study of bodies in motion without regard to the forces or torques that may produce the motion. The most common method for collecting motion data uses an imaging and motion-caption system to record the 2D or 3D coordinates of markers attached to a moving object, followed by manual or automatic digitizing software. Above all, passive optical motion capture systems (e.g. Vicon system) have been regarded as the gold standards for collecting motion data. On the other hand, ImageJ is used widely for an image analysis as free software, and can collect the 2D coordinates of markers. Although much research has been carried out into the utilizations of the ImageJ software, little is known about their reliability. Method: Seven healthy female students participated as the subject in this study. Seventeen reflective markers were attached on the right and left lower limbs to measure two and three-dimensional joint angular motions. Jump performance was recorded by ten-vicon camera systems (250Hz) and one digital video camera (240Hz). The joint angles of the ankle and knee joints were calculated using 2D (ImageJ) and 3D (Vicon-MX) motion data, respectively. Results: Pearson's correlation coefficients between the two methods were calculated, and significance tests were conducted (${\alpha}=1%$). Correlation coefficients between the two were over 0.98. In Vicon-MX and ImageJ, there is no systematic error by examination of the validity using the Bland-Altman method, and all data are in the 95% limits of agreement. Conclusion: In this study, correlation coefficients are generally high, and the regression line is near the identical line. Therefore, it is considered that motion analysis using ImageJ is a useful tool for evaluation of human movements in various research areas. Application: This result can be utilized as a practical tool to analyze human performance in various fields.

Effect of Diethyldithiocarbamate on Radiation-induced Learning and Memory Impairment in Mouse (방사선 유도 학습기억 장애에 대한 diethyldithiocarbamate의 효과)

  • Jang, Jong-Sik;Kim, Jong-Choon;Moon, Chang-Jong;Jung, U-Hee;Jo, Sung-Kee;Kim, Sung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.123-128
    • /
    • 2012
  • Evidence suggests that even low-dose irradiation can lead to progressive cognitive decline and memory deficits, which implicates, in part, hippocampal dysfunction in both humans and experimental animals. This study examined whether diethyldithiocarbamate (DDC) could attenuate memory impairment, using passive avoidance and object recognition test, and suppression of hippocampal neurogenesis, using the TUNEL assay and immunohistochemical detection with markers of neurogenesis (Kiel 67 (Ki-67) and doublecortin (DCX)) in adult mice treated with gamma radiation (0.5 or 2 Gy). DDC was administered intraperitonially at a dosage of 1,000 $mg{\cdot}kg^{-1}$ of body weight at 30 min. before irradiation. In passive avoidance and object recognition memory test, the mice, trained for 1 day after acute irradiation (2 Gy) showed significant memory deficits compared with the sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 12 h after irradiation. In addition, the number of Ki-67- and DCX-positive cells were significantly decreased. DDC treatment prior to irradiation attenuated the memory defect, and blocked the apoptotic death. DDC may attenuate memory defect in a relatively low-dose exposure of radiation in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis.

Effect of Red Ginseng on Radiation-induced Learning and Memory Impairment in Mouse (방사선 조사 마우스에서 학습기억 장애에 대한 홍삼의 효과)

  • Lee, Hae-June;Kim, Joong-Sun;Moon, Chang-Jong;Kim, Jong-Choon;Jo, Sung-Kee;Jang, Jong-Sik;Kim, Sung-Ho
    • Journal of Ginseng Research
    • /
    • v.33 no.2
    • /
    • pp.132-138
    • /
    • 2009
  • Previous studies suggest that even low-dose irradiation can lead to progressive cognitive decline and memory deficits, which implicates, in part, hippocampal dysfunction in both humans and experimental animals. In this study, whether red ginseng (RG) could attenuate memory impairment was investigated through a passive-avoidance and object recognition memory test, as well as the suppression of hippocampal neurogenesis, using the TUNEL assay and immunohistochemical detection with markers of neurogenesis (Ki-67 and doublecortin (DCX)) in adult mice treated with a relatively low-dose exposure to gamma radiation (0.5 or 2.0 Gy). RG was administered intraperitonially at a dosage of 50 mg/kg of body weight, at 36 and 12 h pre-irradiation and at 30 minutes post-irradiation, or orally at a dosage of 250 mg! kg of body weight/day for seven days before autopsy. In the passive-avoidance and object recognition memory test, the mice that were trained for one day after acute irradiation (2 Gy) showed significant memory deficits compared with the sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 12 h after irradiation. In addition, the number of Ki-67- and DCX-positive cells was significantly decreased. RG treatment prior to irradiation attenuated the memory defect and blocked apoptotic death as well as a decrease in the Ki-67- and DCX-positive cells. RG may attenuate memory defect in a relatively low-dose exposure to radiation in adult mice, possibly by inhibiting the detrimental effect of irradiation on hippocampal neurogenesis.

Introducing Depth Camera for Spatial Interaction in Augmented Reality (증강현실 기반의 공간 상호작용을 위한 깊이 카메라 적용)

  • Yun, Kyung-Dahm;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.62-67
    • /
    • 2009
  • Many interaction methods for augmented reality has attempted to reduce difficulties in tracking of interaction subjects by either allowing a limited set of three dimensional input or relying on auxiliary devices such as data gloves and paddles with fiducial markers. We propose Spatial Interaction (SPINT), a noncontact passive method that observes an occupancy state of the spaces around target virtual objects for interpreting user input. A depth-sensing camera is introduced for constructing the virtual space sensors, and then manipulating the augmented space for interaction. The proposed method does not require any wearable device for tracking user input, and allow versatile interaction types. The depth perception anomaly caused by an incorrect occlusion between real and virtual objects is also minimized for more precise interaction. The exhibits of dynamic contents such as Miniature AR System (MINARS) could benefit from this fluid 3D user interface.

  • PDF

Head tracking system using image processing (영상처리를 이용한 머리의 움직임 추적 시스템)

  • 박경수;임창주;반영환;장필식
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-10
    • /
    • 1997
  • This paper is concerned with the development and evaluation of the camera calibration method for a real-time head tracking system. Tracking of head movements is important in the design of an eye-controlled human/computer interface and the area of virtual environment. We proposed a video-based head tracking system. A camera was mounted on the subject's head and it took the front view containing eight 3-dimensional reference points(passive retr0-reflecting markers) fixed at the known position(computer monitor). The reference points were captured by image processing board. These points were used to calculate the position (3-dimensional) and orientation of the camera. A suitable camera calibration method for providing accurate extrinsic camera parameters was proposed. The method has three steps. In the first step, the image center was calibrated using the method of varying focal length. In the second step, the focal length and the scale factor were calibrated from the Direct Linear Transformation (DLT) matrix obtained from the known position and orientation of the camera. In the third step, the position and orientation of the camera was calculated from the DLT matrix, using the calibrated intrinsic camera parameters. Experimental results showed that the average error of camera positions (3- dimensional) is about $0.53^{\circ}C$, the angular errors of camera orientations are less than $0.55^{\circ}C$and the data aquisition rate is about 10Hz. The results of this study can be applied to the tracking of head movements related to the eye-controlled human/computer interface and the virtual environment.

  • PDF