• Title/Summary/Keyword: steel reinforced grout

Search Result 13, Processing Time 0.022 seconds

Experimental study and numerical investigation of behavior of RC beams strengthened with steel reinforced grout

  • Bencardino, Francesco;Condello, Antonio
    • Computers and Concrete
    • /
    • v.14 no.6
    • /
    • pp.711-725
    • /
    • 2014
  • The purpose of this study is to evaluate the behavior and the strength of SRG (Steel Reinforced Grout) externally strengthened Reinforced Concrete (RC) beams by using a nonlinear numerical analysis. The numerical simulation was carried out by using a three-dimensional (3D) finite element model. An interface element with a suitable damage model was used to model the connection between concrete surface and SRG reinforcing layer. The reliability of the finite element 3D-model was checked using experimental data obtained on a set of three RC beams. The parameters taken into consideration were the external configuration, with or without U-end anchorages, the concrete strength, the amount of internal tensile steel reinforcement. Conclusions were made concerning the strength and the ductility of the strengthened beams by varying the parameters and on the effectiveness of the SRG reinforcing system applied with two types of external strengthening configuration.

An Experimental Study on Strengthened Behavior of Reinforced Concrete Columns with Steel Plate (강판 보강된 철근 콘크리트 기둥의 거동에 대한 실험적 연구)

  • 박주현;홍기섭;홍영균;신영수;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.557-564
    • /
    • 1997
  • This research is aimed to evaluate the effects of repair conditions, axial load intensities and the enlargement of cross sections after strengthening with steel plate and on the structural behavior of the reinforced concrete columns subjected to axial and lateral loadings. 6 columns were tested under uniform axial compression and concentrated load at the midspan until failiure occurs. As test results, It has been found that the amount of grout bar and the condition of strengthening significantly affect the behavior or reinforced concrete column with steel plate and grout 4 bar (C-G4S2 serise) and enlarged reinforced concrete column with steel plate and grout 8 bar (C-G8S2 serise) are increased to 1000% and 1200% in comparison of those of unstrengthened reinforced concrete columns, respectively

  • PDF

Evaluation of Impact Resistance Performance of Fiber Reinforced Preplace Grout Mortar (섬유를 혼입한 프리플레이스 모르타르의 내충격 성능 평가)

  • Lee, Sang-Gyu;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Young-Wook;Hwang, Eui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.65-66
    • /
    • 2015
  • In this study, it evaluate mecahnical performance and impact resistance performance of fiber reinforced concrete, fiber reinforced mortar and preplace grout mortar. steel fiber, nylon fiber and polypropylene fiber are reinforced 1vol.% 2vol.% 10vol.% by each fiber type. It evaluate impact resistance performance to use projectile 10mm of 400m/s velocity. As a result, mechnical performance and impact resistance performance of fiber reinforced preplace grout mortar are improved a lot by 10% fiber reinforced ratio.

  • PDF

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls

  • Tarque, Nicola;Salsavilca, Jhoselyn;Yacila, Jhair;Camata, Guido
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • In Peru, construction of dwellings using confined masonry walls (CM) has a high percentage of acceptance within many sectors of the population. It is estimated that only in Lima, 80% of the constructions use CM and at least 70% of these are informal constructions. This mean that they are built without proper technical advice and generally have a high seismic vulnerability. One way to reduce this vulnerability is by reinforcing the walls. However, despite the existence of some reinforcement methods in the market, not all of them can be applied massively because there are other parameters to take into account, as economical, criteria for seismic improvement, reinforcement ratio, etc. Therefore, in this paper the feasibility of using five reinforcement techniques has been studied and compared. These reinforcements are: welded mesh (WM), glass fiber reinforced polymer (GFRP), carbon fiber reinforced polymer (CFRP), steel bar wire mesh (CSM), steel reinforced grout (SRG). The Multi-Criteria Decision Making (MCDM) method can be useful to evaluate the most optimal strengthening technique for a fast, effective and massive use plan in Peru. The results of using MCDM with 10 criteria indicate that the Carbon Fiber Reinforced Polymer (CFRP) and Steel Reinforced Grout (SRG) methods are the most suitable for a massive reinforcement application in Lima.

The applicability of FRP material for tunnel support (터널보강재로서 FRP재료의 적용성 검토)

  • Choi, Yong-Ki;Kwon, Oh-Youb;Bae, Gyu-Jin;Cho, Mahn-Sup
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • The purpose of this study is to improve the problems in Umbrella Arch Method, such as the oxidation, the difficulties in installation and cutting of the steel pipe. The applicability of the high strength FRP (Fiber-Reinforced-Plastic) materials composed of glass fiber as a substitute of steel pipe was investigated in this study. The results of this study show that FRP material is better than steel pipe in work performance and the durability of material except for its price. From the numerical analysis with various types of FRP, it was evaluated that the equiangular curve type is more efficient than the flat type developed abroad, and the supporting effect of FRP-grout mixture is similar to that of steel-grout mixture in results of bending strength test.

  • PDF

An Experimental Study on the Bonding Characteristic of Steel Tubular Joint Connection filled with Fiber Reinforced High Performance Cementeous Grout (섬유보강 고성능시멘트계 그라우트가 적용된 강관 연결부의 부착특성에 대한 실험적 연구)

  • Oh, Hong-Seob;Seo, Gyo;Kim, Sang-Hyeon;Ko, Sang-Jin;Lee, Hyeon-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.21-29
    • /
    • 2014
  • This paper deals with the bonding characteristic of grouted joint connections of monopile support structures for offshore wind power facilities. For the integration of pile connection of wind power supporting structure, fiber reinforced high performance cementeous grout was developed and the ultimate compressive strength of it is 125MPa and the direct tensile strength is 7.5 MPa at 7 days. To assess the bond strength of grout filled in pile connection, small scaled direct bond tests under axially loaded was performed and analyzed according the existing guidelines. The fiber volume fraction (0%, 0.5% and 0.9%), aspect ratio of fiber (60 and 80) and the ratio of height to spacing of shear key (0.013 and 0.056) were adopted as the experimental variables. From the test results, the maximum bond strength among the all specimens was 30.8MPa and the bond strength of grouted connection was affected by the ratio of height to spacing of shear key than the fiber volume fraction.

Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve

  • Jiang, Shouchao;Guo, Xiaonong;Xiong, Zhe;Cai, Yufang;Zhu, Shaojun
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.585-596
    • /
    • 2017
  • Tubular joints have been widely used in offshore platforms and space structures due to their merits such as easy fabrication, aesthetic appearance and better static strength. For existing tubular joints, a grouted sleeve reinforced method was proposed in this paper. Experimental tests on five tubular T-joints reinforced with the grouted sleeve and two conventional tubular T-joints were conducted to investigate their mechanical behaviour. A constant axial compressive force was applied to the chord end to simulate the compressive state of the chord member during the tests. Then an axial compressive force was applied to the top end of the brace member until the collapse of the joint specimens occurred. The parameters investigated herein were the grout thickness, the sleeve length coefficient and the sleeve construction method. The failure mode, ultimate load, initial stiffness and deformability of these joint specimens were discussed. It was found that: (1) The grouted sleeve could change the failure mode of tubular T-joints. (2) The grouted sleeve was observed to provide strength enhancement up to 154.3%~172.7% for the corresponding un-reinforced joint. (3) The initial stiffness and deformability were also greatly improved by the grouted sleeve. (4) The sleeve length coefficient was a key parameter for the improved effect of the grouted sleeve reinforced method.

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.

In-Situ Application of Steel Pipe jacking with Grout In Pipe Method (GIP 강관추진공법의 현장 적용성 연구)

  • Lim, Ho-Jeong;Jung, Min-Hyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1290-1297
    • /
    • 2008
  • A pipe jacking method complements the excavation method and it is a non-excavation method which is thrust in the earth. On that score, using the pipe jacking method is increased because of constructability and economical efficiency in a medium or small-sized pipeline construction. However, a pipe jacking method still has several problems that the base ground is disturbed and loosen. Especially, where some sites have boulders, gravels and foreign bodies, the foundation is brought about deformation, settlement and leakage of water. Thus, the end of the construction the ground should be reinforced by grouting and it occur with additional expenses. Therefore, a steel pipe jacking method with grouting, Grout In Pipe, is devised newly to complement the existing method. In this study, it describes a new method and verifies efficiency, an application and practicality of the method through a experimental construction.

  • PDF