DOI QR코드

DOI QR Code

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Received : 2019.07.29
  • Accepted : 2019.10.21
  • Published : 2020.03.25

Abstract

This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

Keywords

Acknowledgement

The authors convey sincere appreciations to Dr. Christian Carloni, as well as the technicians of LISG (Laboratory of Structural and Geotechnical Engineering) and CIRI (Interdepartmental Centre for Industrial Research in Building and Construction) for sharing their knowledge and wisdom throughout this research during the first author's sabbatical leave at University of Bologna, Italy. Also not forgetting Kerakoll of Sassuolo, Italy, whom the authors acknowledge for providing composite materials for testing.

References

  1. Abderezak, R., Daouadji, T.H., Rabia, B. and Belkacem, A. (2018), "Nonlinear analysis of damaged RC beams strengthened with glass fiber reinforced polymer plate under symmetric loads", Earthq. Struct., 15(2), 113-122. https://doi.org/10.12989/eas.2018.15.2.113.
  2. ACI 440.2R (2008), Guide for the Design and Construction of Externally Bonded FRP Systems; American Concrete Institute.
  3. Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T., and Van Hemelrijck, D. (2016), "Monitoring the failure mechanisms of a reinforced concrete beam strengthened by textile reinforced cement using acoustic emission and digital image correlation", Smart Struct. Syst., 17(1), 91-105. https://doi.org/10.12989/sss.2016.17.1.091.
  4. Alecci, V., Misseri, G., Rovero, L., Stipo, G., De Stefano, M., Feo, L. and Luciano, R. (2016), "Experimental investigation on masonry arches strengthened with PBO-FRCM composite", Compos. Part B: Eng., 100, 228-239. https://doi.org/10.1016/j.compositesb.2016.05.063.
  5. Amidi, S. and Wang, J. (2016), "Subcritical debonding of FRP-toconcrete bonded interface under synergistic effect of load, moisture, and temperature", Mech. Mater., 92, 80-93. https://doi.org/10.1016/j.mechmat.2015.09.001.
  6. Ascione, F., Lamberti, M., Napoli, A., Razaqpur, A.G. and Realfonzo, R. (2019), "Modeling SRP-concrete interfacial bond behavior and strength", Eng. Struct., 187, 220-230. https://doi.org/10.1016/j.engstruct.2019.02.050.
  7. Ascione, F., Lamberti, M., Napoli, A., Razaqpur, G. and Realfonzo, R. (2017), "An experimental investigation on the bond behavior of steel reinforced polymers on concrete substrate", Compos. Struct., 181, 58-72. https://doi.org/10.1016/j.compstruct.2017.08.063.
  8. Babatunde, S.A. (2017), "Review of strengthening techniques for masonry using fiber reinforced polymers", Compos. Struct., 161, 246-255. https://doi.org/10.1016/j.compstruct.2016.10.132.
  9. Bagheri, M., Chahkandi, A. and Jahangir, H. (2019), "Seismic Reliability Analysis of RC Frames Rehabilitated by Glass Fiber-Reinforced Polymers", Int. J. Civil Eng., 17(11), 1785-1797. https://doi.org/10.1007/s40999-019-00438-x.
  10. Barakat, S., Al-Toubat, S., Leblouba, M. and Al Burai, E. (2019), "Behavioral trends of shear strengthened reinforced concrete beams with externally bonded fiber-reinforced polymer", Struct. Eng. Mech., 69(5), 579-589. https://doi.org/10.12989/sem.2019.69.5.579.
  11. Bellini, A., Bovo, M. and Mazzotti, C. (2019), "Experimental and numerical evaluation of fiber-matrix interface behaviour of different FRCM systems", Compos. Part B: Eng., 161, 411-426. https://doi.org/10.1016/j.compositesb.2018.12.115.
  12. Bencardino, F. and Condello, A. (2014), "Experimental study and numerical investigation of behavior of RC beams strengthened with steel reinforced grout", Comput. Concrete, 14(6), 711-725. https://doi.org/10.12989/cac.2014.14.6.711.
  13. Borri, A., Casadei, P., Castori, G. and Hammond, J. (2009), "Strengthening of Brick Masonry Arches with Externally Bonded Steel Reinforced Composites", J. Compos. Constr., 13(6), 468-475. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000030.
  14. Cao, M., Li, L. and Xu, L. (2017), "Relations between rheological and mechanical properties of fiber reinforced mortar", Comput. Concrete, 20(4), 449-459. https://doi.org/10.12989/cac.2017.20.4.449.
  15. Carozzi, F.G., Poggi, C., Bertolesi, E. and Milani, G. (2018), "Ancient masonry arches and vaults strengthened with TRM, SRG and FRP composites: Experimental evaluation", Compos. Struct., 187, 466-480. https://doi.org/10.1016/j.compstruct.2017.12.075.
  16. Casadei, P. and Girardello, P. (2019), "SRG Composite Systems for Strengthening Masonry Structures: From Laboratory to Field Applications." In Structural Analysis of Historical Constructions, 1715-1724. Springer, Cham.
  17. Daskiran, E.G., Daskiran, M.M. and Gencoglu, M. (2016), "Development of fine grained concretes for textile reinforced cementitious composites", Comput. Concrete, 18(2), 279-295. https://doi.org/10.12989/cac.2016.18.2.279.
  18. De Canio, G., de Felice, G., De Santis, S., Giocoli, A., Mongelli, M., Paolacci, F. and Roselli, I. (2016), "Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall", Earthq. Struct., 10(1), 53-71. https://doi.org/10.12989/eas.2016.10.1.053.
  19. De Santis, S., Ceroni, F., de Felice, G., Fagone, M., Ghiassi, B., Kwiecien, A., Lignola, G.P., Morganti, M., Santandrea, M., Valluzzi, M.R. and Viskovic, A. (2017), "Round Robin Test on tensile and bond behaviour of Steel Reinforced Grout systems", Compos. Part B: Eng., 127, 100-120. https://doi.org/10.1016/j.compositesb.2017.03.052.
  20. De Santis, S., de Felice, G., Napoli, A. and Realfonzo, R. (2016), "Strengthening of structures with Steel Reinforced Polymers: A state-of-the-art review", Compos. Part B: Eng., 104, 87-110. https://doi.org/10.1016/j.compositesb.2016.08.025.
  21. De Santis, S., Hadad, H.A., De Caso y Basalo, F., de Felice, G., and Nanni, A. (2018), "Acceptance criteria for tensile characterization of fabric-reinforced cementitious matrix systems for concrete and masonry repair", J. Compos.r Constr., 22(6), 04018048. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000886.
  22. De Santis, S., Roscini, F. and de Felice, G. (2019). "Strengthening of masonry vaults with textile reinforced mortars." In Structural Analysis of Historical Constructions, 1539-1547, Springer, Cham.
  23. Donnini, J. and Corinaldesi, V. (2017), "Mechanical characterization of different FRCM systems for structural reinforcement", Constr. Building Mater., 145, 565-575. https://doi.org/10.1016/j.conbuildmat.2017.04.051.
  24. EN, B.S. (2009), Testing hardened concrete--Part 3: Compressive strength of test specimens; London, British Standard Institution.
  25. Ghiassi, B., Oliveira, D.V., Marques, V., Soares, E. and Maljaee, H. (2016), "Multi-level characterization of steel reinforced mortars for strengthening of masonry structures", Mater. Design, 110, 903-913. https://doi.org/10.1016/j.matdes.2016.08.034.
  26. Grande, E., Imbimbo, M. and Sacco, E. (2015), "Investigation on the bond behavior of clay bricks reinforced with SRP and SRG strengthening systems", Mater. Struct., 48(11), 3755-3770. https://doi.org/10.1617/s11527-014-0437-x.
  27. Grande, E., Imbimbo, M. and Sacco, E. (2018), "Numerical investigation on the bond behavior of FRCM strengthening systems", Compos. Part B: Eng., 145, 240-251. https://doi.org/10.1016/j.compositesb.2018.03.010.
  28. Hadji, L., Daouadji, T.H., Meziane, M.A.A. and Bedia, E.A.A. (2016), "Analyze of the interfacial stress in reinforced concrete beams strengthened with externally bonded CFRP plate", Steel Compos. Struct., 20(2), 413-429. https://doi.org/10.12989/scs.2016.20.2.413.
  29. Huang, J. and Huang, P. (2011), "Three-dimensional numerical simulation and cracking analysis of fiber-reinforced cementbased composites", Comput. Concrete, 8(3), 327-341. https://doi.org/10.12989/cac.2011.8.3.327.
  30. Huang, X., Birman, V., Nanni, A. and Tunis, G. (2005), "Properties and potential for application of steel reinforced polymer and steel reinforced grout composites", Compos. Part B: Eng., 36(1), 73-82. https://doi.org/10.1016/S1359-8368(03)00080-5.
  31. Jabbar, A.S.A., Alam, M.A. and Mustapha, K.N. (2016), "Investigation of the effects of connectors to enhance bond strength of externally bonded steel plates and CFRP laminates with concrete", Steel Compos. Struct., 20(6), 1275-1303. https://doi.org/10.12989/scs.2016.20.6.1275.
  32. Jabr, A., El-Ragaby, A. and Ghrib, F. (2017), "Effect of the fiber type and axial stiffness of FRCM on the flexural strengthening of RC beams", Fibers, 5(1), 2-16. https://doi.org/10.3390/fib5010002.
  33. Jahangir, H. and Esfahani, M.R. (2018), "Numerical study of bond - slip mechanism in advanced externally bonded strengthening composites", KSCE J. Civil Engineering, 22(11), 4509-4518. https://doi.org/10.1007/s12205-018-1662-6.
  34. Jiang, S., Guo, X., Xiong, Z., Cai, Y. and Zhu, S. (2017), "Experimental studies on behaviour of tubular T-joints reinforced with grouted sleeve", Steel Compos. Struct., 23(5), 585-596. https://doi.org/10.12989/scs.2017.23.5.585.
  35. Kerakoll, S.P.A. (2018), http://www.kerakoll.com
  36. Koksal, H.O., Jafarov, O., Doran, B., Aktan, S. and Karakoc, C. (2013), "Computational material modeling of masonry walls strengthened with fiber reinforced polymers", Struct. Eng. Mech., 48(5), 737-755. https://doi.org/10.12989/sem.2013.48.5.737.
  37. Koksal, H.O., Jafarov, O., Doran, B., Aktan, S. and Karakoc, C. (2013), "Computational material modeling of masonry walls strengthened with fiber reinforced polymers", Struct. Eng. Mech., 48(5), 737-755. https://doi.org/10.12989/sem.2013.48.5.737.
  38. Koutas, L.N., Tetta, Z., Bournas, D.A. and Triantafillou, T.C. (2019), "Strengthening of concrete structures with textile reinforced mortars: State-of-the-art review", J. Compos. Constr., 23(1), 03118001. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000882.
  39. Kwon, S.J., Choi, J.I., Nguyen, H.H. and Lee, B.Y. (2018), "Tensile strain-hardening behaviors and crack patterns of slagbased fiber-reinforced composites", Comput. Concrete, 21(3), 231-237. https://doi.org/10.12989/cac.2018.21.3.231.
  40. Li, H., Wang, W. and Zhou, W. (2014), "Fatigue damage monitoring and evolution for basalt fiber reinforced polymer materials", Smart Struct. Syst., 14(3), 307-325. https://doi.org/10.12989/sss.2014.14.3.307.
  41. Li, S.C., Dong, J.X. and Li, L.F. (2012), "Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls", Struct. Eng. Mech., 41(1), 95-112. https://doi.org/10.12989/sem.2012.41.1.095.
  42. Liang, X. and Xing, P. (2018), "Seismic behavior of fiber reinforced cementitious composites coupling beams with conventional reinforcement", Earthq. Struct., 14(3), 261-271. https://doi.org/10.12989/eas.2018.14.3.261.
  43. Lopez, A., Galati, N., Alkhrdaji, T. and Nanni, A. (2007), "Strengthening of a reinforced concrete bridge with externally bonded steel reinforced polymer (SRP)", Compos. Part B: Eng., 38(4), 429-436. https://doi.org/10.1016/j.compositesb.2006.09.003.
  44. Marcinczak, D., Trapko, T. and Musial, M. (2019), "Shear strengthening of reinforced concrete beams with PBO-FRCM composites with anchorage", Compos. Part B: Eng., 158, 149-161. https://doi.org/10.1016/j.compositesb.2018.09.061.
  45. Mazzuca, S., Hadad, H.A., Ombres, L. and Nanni, A. (2019), "Mechanical characterization of steel-reinforced grout for strengthening of existing masonry and concrete structures", J. Mater. Civil Eng., 31(5), 04019037. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002669.
  46. Nascimbene, R. (2013), "Analysis and optimal design of fiberreinforced composite structures: sail against the wind", Wind Struct., 16(6), 541-560. https://doi.org/10.12989/was.2013.16.6.541.
  47. Park, J.G., Lee, K.M., Shin, H.M. and Park, Y.J. (2007), "Nonlinear analysis of RC beams strengthened by externally bonded plates", Comput. Concrete, 4(2), 119-134. https://doi.org/10.12989/cac.2007.4.2.119.
  48. Park, J.W. and Yoo, J.H. (2013), "Axial loading tests and load capacity prediction of slender SHS stub columns strengthened with carbon fiber reinforced polymers", Steel Compos. Struct., 15(2), 131-150. https://doi.org/10.12989/scs.2013.15.2.131.
  49. Park, J., and Yoo, J. (2015), "Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet", Steel and Composite Structures, 19(2), 441-465. https://doi.org/10.12989/scs.2015.19.2.441.
  50. Pellegrino, C. and Modena, C. (2002), "Fiber reinforced polymer shear strengthening of reinforced concrete beams with transverse steel reinforcement", J. Compos. Constr., 6(2), 104-111. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:2(104).
  51. Prashob, P.S., Shashikala, A.P. and Somasundaran, T.P. (2017), "Behaviour of carbon fiber reinforced polymer strengthened tubular joints", Steel Compos. Struct., 24(4), 383-390. https://doi.org/10.12989/scs.2017.24.4.383.
  52. Razavizadeh, A., Ghiassi, B. and Oliveira, D. V. (2014), "Bond behavior of SRG-strengthened masonry units: Testing and numerical modeling", Constr. Build. Mater., 64, 387-397. https://doi.org/10.1016/j.conbuildmat.2014.04.070.
  53. Salimian, M.S. and Mostofinejad, D. (2019), "Experimental Evaluation of CFRP-Concrete Bond Behavior under High Loading Rates Using Particle Image Velocimetry Method", J. Compos. Constr., 23(3), 04019010. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000933.
  54. Santandrea, M., Imohamed, I.A.O., Jahangir, H., Carloni, C., Mazzotti, C., De Miranda, S., Ubertini, F. and Casadei, P. (2016). "An investigation of the debonding mechanism in steel FRP- and FRCM-concrete joints", Proceedings of the 4th Workshop on The New Boundaries of Structural Concrete, Capri, Italy, January.
  55. Sumathi, A. and Vignesh, A.S. (2017), "Study on behavior of RCC beams with externally bonded FRP members in flexure", Adv. Concrete Constr., 5(6), 625-638. https://doi.org/10.12989/acc.2017.5.6.625.
  56. Trapko, T. and Musial, M. (2017), "PBO mesh mobilization via different ways of anchoring PBO-FRCM reinforcements", Compos. Part B: Eng., 118, 67-74. https://doi.org/10.1016/j.compositesb.2017.03.009.
  57. Wang, X., Lam, C.C. and Iu, V.P. (2018), "Experimental investigation of in-plane shear behaviour of grey clay brick masonry panels strengthened with SRG", Eng. Struct., 162, 84-96. https://doi.org/10.1016/j.engstruct.2018.02.027.
  58. Younis, A. and Ebead, U. (2018), "Bond characteristics of different FRCM systems", Constr. Build. Mater., 175, 610-620. https://doi.org/10.1016/j.conbuildmat.2018.04.216.

Cited by

  1. Behaviour Investigation of SMA-Equipped Bar Hysteretic Dampers Using Machine Learning Techniques vol.11, pp.21, 2020, https://doi.org/10.3390/app112110057