DOI QR코드

DOI QR Code

Improvement of PDMS graphene transfer method through surface modification of target substrate

폴리디메틸실록산(PDMS)을 이용한 그래핀 전사법 개선을 위한 계면처리 연구

  • Han, Jae-Hyung (School of Electronics Engineering, Kyungpook National University) ;
  • Choi, Mu-Han (School of Electronics Engineering, Kyungpook National University)
  • 한재형 (경북대학교 IT대학 전자공학부) ;
  • 최무한 (경북대학교 IT대학 전자공학부)
  • Received : 2015.04.21
  • Accepted : 2015.05.29
  • Published : 2015.06.30

Abstract

In this paper, we study the dry transfer technology utilizing PDMS (Polydimethylsiloxane) stamp of a large single-layer graphene grown on Cu-foil as catalytic metal by using Chemical Vapor Deposition (CVD). By changing the surface property of the target substrate through $UV/O_3$ treatment, we can transfer the graphene on the target substrate while minimizing mechanical damages of graphene layer. Multi-layer (1~4 layers) graphene was stacked on $SiO_2/Si$ wafer successfully by repeating thetransfer method/process and then optical transmittance and sheet resistance of graphene layers have been measured as a quality assessment.

화학기상증착법(CVD)을 이용하여 Cu-foil 위에 합성된 대면적의 단층 그래핀(Graphene)을 폴리머 탄성융합체 PDMS(Polydimethylsiloxane)를 이용하여 건식으로 전사하는 기술을 연구하였다. 이때, $UV/O_3$처리를 통해 목표 기판(target substrate)의 표면 개질을 변화시켜 그래핀의 손상이 최소화되로록 그래핀을 전사하였다. 이 과정을 반복 실행하여 그래핀을 다층(1~4 layers)으로 $SiO_2/Si$기판 위에 적층하였으며, 전사된 다층 그래핀의 품질평가를 위하여 광투과율과 면저항의 변화를 측정하였다.

Keywords

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nature materials, 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  2. N. Stander, B. Huard, and D. Goldhaber-Gordon, Evidence for Klein tunneling in graphene p-n junctions, Physical Review Letters, 102 (2), 026807 (2009) https://doi.org/10.1103/PhysRevLett.102.026807
  3. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, M. I. Katsnelson, I. V Grigorieva, S. V Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, 438, 197-200 (2005). https://doi.org/10.1038/nature04233
  4. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438, 201-204 (2005). https://doi.org/10.1038/nature04235
  5. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009). https://doi.org/10.1038/nature07719
  6. L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, and X. Duan, High-speed graphene transistors with a self-aligned nanowire gate, Nature, 467, 305-308 (2010). https://doi.org/10.1038/nature09405
  7. H. J. Yoon, D. H. Jun, J. H. Yang, Z. Zhou, S. S. Yang, and M. M. C. Cheng, Carbon dioxide gas sensor using a graphene sheet, Sensors and Actuators, B: Chemical, 157, 310-313 (2011). https://doi.org/10.1016/j.snb.2011.03.035
  8. Y. Zheng, G.-X. Ni, C.-T. Toh, M.-G. Zeng, S.-T. Chen, K. Yao, and B. Ozyilmaz, Gate-controlled nonvolatile graphene-ferroelectric memory, Applied Physics Letters, 94(16), 163505 (2009). https://doi.org/10.1063/1.3119215
  9. S. Park and R. S. Ruoff, Chemical methods for the production of graphenes, nature nanotechnology, 4, 217-224 (2009). https://doi.org/10.1038/nnano.2009.58
  10. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene, Science, 312, 1191-1196 (2006). https://doi.org/10.1126/science.1125925
  11. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 324, 1312-1314 (2009). https://doi.org/10.1126/science.1171245
  12. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes, Nano Letters, 9(12), 4359-4363 (2009). https://doi.org/10.1021/nl902623y
  13. M. J. Allen, V. C. Tung, L. Gomez, Z. Xu, L. M. Chen, K. S. Nelson, C. Zhou, R. B. Kaner, and Y. Yang, Soft transfer printing of chemically converted graphene, Advanced Materials, 21, 2098-2102 (2009). https://doi.org/10.1002/adma.200803000
  14. S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, nature nanotechnology, 5, 574-578 (2010). https://doi.org/10.1038/nnano.2010.132
  15. S. Bhaviripudi, X. Jia, M. S. Dresselhaus, and J. Kong, Role of Kinetic Factors in Chemical Vapor Graphene Using Copper Catalyst, Nano letters, 10, 4128-4133 (2010). https://doi.org/10.1021/nl102355e
  16. X. Li, C. W. Magnuson, A. Venugopal, J. An, J. W. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. M. Vogel, E. Voelkl, L. Colombo, and R. S. Ruoff, Graphene films with large domain size by a two-step chemical vapor deposition process, Nano Letters, 10, 4328-4334 (2010). https://doi.org/10.1021/nl101629g
  17. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters, 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  18. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320, 1308 (2008). https://doi.org/10.1126/science.1156965