DOI QR코드

DOI QR Code

Studies on LED Wavelength to Enhance Growth and Bio-active Compounds of Carrots

당근의 성장과 생리활성물질 함량을 증진시키는 LED 파장에 관한 연구

  • Kang, Suna (Dept. of Food and Nutrition, Division of Biotechnology Industry, Institute of Basic Science, College of Natural Science, Hoseo University) ;
  • Kim, Min-Jung (Food Functional Research Division, Korean Food Research Institutes) ;
  • Kim, Bong Soo (Dept. of R&D, Korea Parus) ;
  • Park, Sunmin (Dept. of Food and Nutrition, Division of Biotechnology Industry, Institute of Basic Science, College of Natural Science, Hoseo University)
  • Received : 2015.01.05
  • Accepted : 2015.03.03
  • Published : 2015.06.30

Abstract

Commercial greenhouse plant factories are highly efficient for controlling external factors such as floods, drought, insects, air pollution etc. However, they require substantial startup & maintenance investments and experimental research to optimize production. These facilities are especially useful for urban farming where high efficiency in small spaces is required. In this study, we investigated whether light emitting diode (LED) lights with mixed dominant wavelengths (650 nm : 550 nm : 445 nm=8:1:1, 650 nm : 445 nm=6:4) can increase the growth rate and bio-active compound content of carrots in comparison to that of fluorescent light (FL). LED with mixed wavelength (650 nm : 550 nm : 445 nm=8:1:1) increased the total weight and root circumference of carrots compared to FL. However, ${\beta}$-carotene contents were not significant in LED (650 nm : 550 nm : 445 nm=8:1:1). However, LED (650 nm : 445 nm=6:4) increased the ${\beta}$-carotene (FL: 7.27, LED: 10.48 mg/g ${\beta}$-carotene dried weight). These results suggested that using LED light at the ideal wavelength, at the antithesis color of the plant, might enhance plant growth and bio-active compound contents.

LED의 적색, 백색, 청색 파장의 비율을 조절한 후 당근에 조사하여 당근의 생육과 당근의 생리활성 물질인 ${\beta}$-carotene의 함량을 증진시키는 파장을 탐색하였다. Light emitting diode (LED) 혼합 파장(적색:청색:백색=8:1:1)을 조사하였을 때, 당근의 총 무게와 뿌리의 둘레길이를 증가시켰으나, 뿌리 무게나 길이는 효과적이지 않았다. ${\beta}$-carotene의 함량 분석에서도 LED 혼합 파장은 대조광인 형광등보다 낮은 값을 나타내었다. ${\beta}$-carotene의 함량을 증진시키는 LED의 파장을 연구하기 위해 단색 파장, 적색과 청색 혼합 파장, 일반 형광등을 당근에 조사하여 ${\beta}$-carotene의 함량을 분석하였다. 15W LED 단색 파장을 조사하였을 때, 445 nm와 650 nm에서 높은 값을 나타내었고(445 nm=9.8, 650 nm=9.3 mg/g dried weight), 적색과 청색 혼합 파장에서는 6:4로 혼합한 혼합 광에서 가장 높은 값을 나타내었다(10.48 mg/g dried weight). LED 혼합 파장(적색:청색:백색=8:1:1)은 당근의 생육에서만 긍정적인 영향을 미쳤고, ${\alpha}$-carotene 함량을 증가시키기는 하였으나 ${\beta}$-carotene의 함량에서는 그 효과가 미미했다. 추가적으로 당근의 생리활성 물질을 증진시키는 LED 파장을 연구하였을 때, LED 혼합 파장(650 nm : 445 nm=6:4)이 당근의 성장과 ${\alpha}$-carotene과 ${\beta}$-carotene 함량을 가장 효과적으로 증가시킨 것으로 나타났다. LED 청색 파장이 주황빛을 나타내는 생리활성 물질인 ${\beta}$-carotene과 ${\alpha}$-carotene 함량을 증가시키는데 영향을 미치는 것으로 사료된다. 본 실험에서는 사전연구에서 적색 비율이 높았던 LED 혼합 파장(적색:청색:백색=8:1:1)이 청색을 나타내는 적채의 anthocyanins의 함량을 높였던 결과와 유사하게 나타났다. LED 혼합 파장(적색:청색:백색=8:1:1)에서 적색의 비율을 낮추고 청색 파장의 비율을 높였을 때(적색:청색=6:4), ${\beta}$-carotene의 함량을 증가시킴을 알 수 있었다. LED를 조사하여 작물을 재배할 경우, 재배 작물과 반대되는 색의 파장의 비율을 높여 LED의 파장을 혼합 시켜 조사하면 작물의 생리활성 물질의 합성을 향상시킬 것으로 기대한다. LED를 조사한 당근의 생육 및 색도, 생리활성 물질 함량에 대해 연구가 많이 되어있지 않으므로 본 연구가 후에 당근의 품질을 향상시키는 연구에 도움을 줄 것으로 사료된다.

Keywords

References

  1. Choi HG, Kwon JK, Moon BY, Kang NJ, Park KS, Cho MW et al. (2013) Effect of different light emitting diode (LED) lights on the growth characteristics production of strawberry fruits during cultivation. Kor J Hort Sci Technol 31, 56-64.
  2. Fred S, Thomas G, and Kim JK (2005) Light emitting diode. Kirk-Othmer Encyclopedia Chem Tech 2, 1-33.
  3. Fu W, Guomundsson O, Paglia G, HerjOlfsson G, Andrésson O.S, Palsson BO et al. (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliellasalina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology Biotechnol 97, 2395-403. https://doi.org/10.1007/s00253-012-4502-5
  4. Goto E (2012) Plant production in a closed plant factory with artificial lighting. In: VII International Symposium on Light in Horticultural Systems 956, 37-49.
  5. Horton JW, White DJ, Maass DL, Hybki DP, Haudek S, and Giroir B (2001) Antioxidant Vitamin Therapy Alters Burn Trauma-Mediated Cardiac NF-[kappa] B Activation and Cardiomyocyte Cytokine Secretion. J Trauma-Injury, Infection, & Critical Care 50, 397-408. https://doi.org/10.1097/00005373-200103000-00002
  6. Ijaz F, Siddiqui A, Im K, and Lee C (2012) Remote management and control system for LED based plant factory using ZigBee and Internet. In Advanced Communication Technol (ICACT), 2012 14th International Conference on, 942-6. IEEE, USA.
  7. Jang YJ (2010) Food-related lifestyle segments of older consumers in Seoul and its characteristics. J Korean Soc Food Sci Nutr 39, 146-53. https://doi.org/10.3746/jkfn.2010.39.1.146
  8. Jeen JH and Son JE (2013) Modeling of canopy light interception of lettuce in LED plant factory. Korean Soc Agricul Machinery 18, 349-50.
  9. Karrer P, Helfenstein A, Wehrli H, and Wettstein A (1930) Pflanzenfarbstoffe XXV. Über die Konstitution des Lycopins und Carotins. Helvetica Chimica Acta 13, 1084-99. https://doi.org/10.1002/hlca.19300130532
  10. Kim HR and You YH (2013) Effects of red, blue, white, and far-red LED slurce on growth responses of Wasabia japonica seedlings in plant factory. Kor J Hort Sci Technol 31, 415-22.
  11. Kim JW (2010) Trend and direction for plant factory system. J Plant Biotechnol 37, 442-55 https://doi.org/10.5010/JPB.2010.37.4.442
  12. Lee KY, Lee YC, Park YS, Yoon KH, and Kim BS (1985) A study of relation between dietary vitamin A levels and cancer risk in Korea. Korean J Nutr 18, 301-11.
  13. Lee SW (2010) Plant cultivation using plant factory and LED artificial light. Optical Sci Technol 14, 12-9.
  14. Lee SW and Park SK (2014) LED array design for optimal combination of plant grown. J Plant Biotechnol 41, 123-6. https://doi.org/10.5010/JPB.2014.41.3.123
  15. Lee WS and Kim SG (2013) Analysis of photosynthetic photon flux by prototype of rotational lighting system for plant factory. J Korea Academia-Industrial Cooperation Soc 14, 529-34. https://doi.org/10.5762/KAIS.2013.14.2.529
  16. Lefsrud MG, Kopsell DA, and Sams CE (2008) Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in kale. HortSci 43, 2243-4.
  17. Massa GD, Kim HH, Wheeler RM, and Mitchell CA (2008) Plant productivity in response to LED lighting. HortSci 43, 1951-6.
  18. Muneer S, Kim EJ, Park JS, and Lee JH (2014) Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Int J Mol Sci 17, 4657-70.
  19. Nishino H (1995) Cancer chemoprevention by natural carotenoids and their related compounds. J Cell Biochem Suppl 22, 231-5.
  20. Park KH (2011) The relationships between well-being lifestyle, well-being attitude, life satisfaction, and demographic characteristics. Family Environ Res 49, 39-49.
  21. Rattner A and Nathans J (2006) Macular degeneration: recent advances and therapeutic opportunities. Nat Rev Neurosci 7, 860-72. https://doi.org/10.1038/nrn2007
  22. Samuoliene G and Duchovskis P (2012) Interaction between flowering initiation and photosynthesis. Applied Photosynthesis 121, 121-40.
  23. Shin YS, Lee MJ, Lee ES, Ahn JH, Lim JH, Kim HJ et al. (2012) Effect of LEDs (light emitting diodes) irradiation on growth and mineral absorption of lettuce (Lactuca sativa L. 'Lollo Rosa'). J Kor Bio-Environ control 21, 180-5.
  24. Terao J (1989) Antioxidant activity of $\beta$-carotene-related carotenoids in solution. Lipids 24, 659-61. https://doi.org/10.1007/BF02535085
  25. Wang H and Lee SL (2012) Well-being orientation, consumer needs for lunch, and lunch behaviors. Life Sci 15, 99-119.