• Title/Summary/Keyword: plant factory

Search Result 390, Processing Time 0.029 seconds

CONTROL ON PLANT FACTORY IN OPTICAL RADIANT CONDITION ACCORDING TO THE MARKET ECONOMICS

  • Akamine, T.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.586-592
    • /
    • 2000
  • There is currently no satisfactory way to optimize supplemental lighting in a greenhouse-type plant factory especially concerning plant production. In a commercial plant factory, we got outside radiation data, inside radiation data and lamp running data. They have a correlation, but have much disorder. By using regression, tendency between the outside and the inside including supplemental lighting was found. We could estimate the average transmittance of this plant factory. From this estimation, we could admit the amount of inside radiation was supplied as much supplied compared to natural radiation. Then we are trying to investigate of the production amount and the supplemental lighting. Plant factory is environmentally controlled, the temperature and humidity are not actually controlled stable. We propose a design of neural network model could be useful to estimate the profit resulting from the operation of supplemental lighting.

  • PDF

Numerical Study on the Thermal Environment of a Natural Light Based Multi-layered Plant Factory (자연광 기반 적층형 식물공장의 열환경에 대한 수치해석 연구)

  • Park, Dong Yoon;Jang, Seong-Teak;Chang, Seong-Ju
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.43-50
    • /
    • 2013
  • Recent researches on plant factory system deal with the convergence of lighting technology, agricultural technology inclusive to the high-tech industries worldwide in order to respond to the decreasing crop harvest due to global warming and abnormal weather phenomena. However, the fundamental performance standard is not currently being introduced in the case of plants factory and its commercialization is not activated because of high initial investment and operating cost. Large portion of the initial investment and operating cost of a plant factory is ascribed to artificial light sources and thermal control facilities, therefore, innovation should be provided in order to improve the economics of the plant factory. As an alternative, new plant factory could harness solar thermal and geothermal systems for heating, cooling and ventilation. In this study, a natural light dependent multi-layer plant factory's thermal environment was analyzed with two-dimensional numerical methods to elicit efficient operation conditions for optimized internal physical environment. Depending on the supply air temperature and airflow rate introduced in the facility, the temperature changes around the crops was interpreted. Since the air supplied into the plant factory does not stay long enough, the ambient temperature predicted around the plating trays was not significantly different from that of the supplied air. However, the changes of airflow rate and air flow pattern could cause difference to the temperature around the planting trays. Increasing the amount of time of air staying around the planting trays could improve energy performance in case the thermal environment of a natural light based multi-layer plant factory is considered.

An Analysis of the Professional's Cognition Regarding the Plant Factory Feasibility (식물공장 사업타당성에 관한 전문가 인식 연구)

  • Lee, Ji-Eun;Cha, WoonCheol
    • Journal of Digital Convergence
    • /
    • v.13 no.12
    • /
    • pp.89-97
    • /
    • 2015
  • Plant factory was started in Europe in the 1960. Thanks to the development of seeds science, nutrient study, environment control technology and automated systems, it has developed into the form of full artificial light system. In recent years, productivity of plant factory has increased with the convergence of ICT. An interest in plant factory has increased with several outstanding achievements. However, the plant factory industry is still stuck at an introductory stage and government investment has been reduced. In order to verify the feasibility of the plant factory, we conducted a survey targeting experts in politics, R&D and business field. We analyze the feasibility of investment in plant factory and strategies to enhance the competitiveness of plant factory.

MICROPRECISION AGRICULTURE

  • Murase, Haruhiko
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.607-612
    • /
    • 2000
  • Microprecision agriculture for a fully controlled plant factory is proposed in this paper. Microprecision agriculture can be attained by using plant factories to realize profitable alternative agriculture. A closed, fully controlled, plant-growing factory is far better in terms of minimizing all sorts of waste. The limit and optimum design concept has to be applied to establish an economically feasible, fully controlled, plant-growing factory. To achieve this objective, microprecision technologies have to be developed. Microprecision technologies should be involved in sensing, modeling, controlling, and collecting information for the mechatronics for plant production. Basic technologies for microprecision are already available; they are SPA (speaking plant approach to environmental control), AI (artificial intelligence: expert systems, neural networks, genetic algorithms, photosynthetic algorithms etc.), bioinstrumentation, non-invasive measurement, biomechatronics, and biorobotics. A microprecision irrigation system for plug production is an example of a microprecision technology that has actually been implemented in a plug seedling production factory.

  • PDF

Actual State and Practical Use of a Factory-like Plant Production System in Japan

  • Tanaka, Isao
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1996.05a
    • /
    • pp.63-73
    • /
    • 1996
  • The importance of plant factory which blend agriculture and manufacture has been discussed widely. This company has researched hydroponics technique for cultivation which has been mainly developed in the sites of Okinawa and Hyougo Prefecture. In 1987, we stopped the previous research there, and started a new one far plant factory at the Agricultural Research Center of Chiba Prefecture. In 1989, we built four experimental plant factories (120㎡) at Chiba Oil Factory Refinery in Ichihara-city, developing techniques of cultivation, equipment production and environmental control for cultivation system of tomato, strawberry and leaf vegetables. (omitted)

  • PDF

The measured field survey for the improvement of the working environment of workers in the plant factory (식물공장 근로자의 작업 환경개선을 위한 현장실측 연구)

  • Kwo, Hyuk-Min;Jeong, Seok-Hwan;Kang, Joo-Won;Yang, Jeong-Hoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.5
    • /
    • pp.43-52
    • /
    • 2014
  • A plant factory system is getting the spotlight as alternatives to cope with the weather anomaly and food crisis because of the global warming. A study on 'Plant Processing Factory System' has been proceeded to develope 'low-carbon green growth' since our government selected it as the green technologies in 2010. The plant factory has played a major role in growth industries connected to many other fields like low-carbon as well as lighting and automated system. This study is aimed to solve the problems on low productivity and health problem of plant workers caused by highly concentrated carbon dioxide and low temperature in each process in the plant factory. It is aimed to research data to understand the actual conditions of plant workers and improve the thermal environment.

Trend and direction for plant factory system (식물공장 시스템의 동향과 발전방향)

  • Kim, Jae-Whune
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.442-455
    • /
    • 2010
  • Plant factory is the fruit of the most advanced modern agricultural technology. This is a crop-producing technology that controls systematically sowing, cultivating, and harvesting crops within an indoor factory. Growing crops in a factory has advantages over traditional farming because it produces safer crops all year around due to clean environment and it is easier to hire workers at the factory. Developed countries has invested actively in this field for several decades because its economical and industrial impact are predicted to be enormous. Recently, Korea also begins to investigate this field actively to develop a system that may be competitive at global market, using technologies and human resources that Korea already has. The plant factory technology is currently less competitive than traditional farming because it requires a large initial investment and management cost and lacks cultivation technologies for various crops. However, I believe in solving these problems if plant biotechnologists participate in developing the plant factory system. If this technology is developed well in Korea, then it will play a great role in solving food and environmental issues.

Sterilization Analysis of Harmful Microbes in LED Plant Factory using UV LED (UV LED를 이용한 LED식물공장 유해미생물 살균 분석)

  • Jang, Jun-Chul;Her, In-Sung;Lee, Se-Il;Yu, Young-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.15-20
    • /
    • 2014
  • Recently, LED (Light Emitting Diode) application research is studying by using a specific wavelength. LED plant factory produced a lot of green plants in a closed spaces, so it should be taken to guard against harmful microbes. Until today, a lot of studies for green plant production in plant factory is proceed but there were no study on harmful microbes in plant factory. Thus, the analysis on sterilization for harmful microbes in plant factory were experimented using UV (Ultra Violet) LED with 282nm of wavelength. As a results on sterilization of three harmful microbes, 50% of sterilization efficiency was achieved after 2.5 hours, 97% was achieved after 12 hours of UV LED irradiation, respectively.

Analysis of Airflow Pattern in Plant Factory with Different Inlet and Outlet Locations using Computational Fluid Dynamics

  • Lim, Tae-Gyu;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.310-317
    • /
    • 2014
  • Purpose: This study was conducted to analyze the air flow characteristics in a plant factory with different inlet and outlet locations using computational fluid dynamics (CFD). Methods: In this study, the flow was assumed to be a steady-state, incompressible, and three-dimensional turbulent flow. A realizable k-${\varepsilon}$ turbulent model was applied to show more reasonable results than the standard model. A CFD software was used to perform the numerical simulation. For validation of the simulation model, a prototype plant factory ($5,900mm{\times}2,800mm{\times}2,400mm$) was constructed with two inlets (${\Phi}250mm$) and one outlet ($710mm{\times}290mm$), located on the top side wall. For the simulation model, the average air current speed at the inlet was $5.11m{\cdot}s^{-1}$. Five cases were simulated to predict the airflow pattern in the plant factory with different inlet and outlet locations. Results: The root mean square error of measured and simulated air current speeds was 13%. The error was attributed to the assumptions applied to mathematical modelling and to the magnitude of the air current speed measured at the inlet. However, the measured and predicted airflow distributions of the plant factory exhibited similar patterns. When the inlets were located at the center of the side wall, the average air current speed in the plant factory was increased but the spatial uniformity was lowered. In contrast, if the inlets were located on the ceiling, the average air current speed was lowered but the uniformity was improved. Conclusions: Based on the results of this study, it was concluded that the airflow pattern in the plant factory with multilayer cultivation shelves was greatly affected by the locations of the inlet and the outlet.

LED array design for optimal combination of plant grown (식물재배를 위한 최적LED 배열조합설계)

  • Lee, Sungwon;Park, Sekwang
    • Journal of Plant Biotechnology
    • /
    • v.41 no.3
    • /
    • pp.123-126
    • /
    • 2014
  • This paper is suitable for household plant factory by design and using both energy-saving LED and solar technology. Conventional household plant factory only depending on natural sunlight is sensitive for the change of external environment. Another a big problem of conventional common household plant factory is large power consumption. Recently interest in wellbeing food such as chemical-free is increased abruptly. To solve these two problems, this paper describes hybrid type of household plant. In particular, reducing the power photosynthesis photon flux density (PPFD) is kept uniform to enhance the growth of the plant. Ambient light sensor is adopted for the control of proper combination of sunlight and LED to keep PPFD constant.