DOI QR코드

DOI QR Code

Design and Analysis of Sub-10 nm Junctionless Fin-Shaped Field-Effect Transistors

  • Kim, Sung Yoon (School of Electronics Engineering, Kyungpook National University) ;
  • Seo, Jae Hwa (School of Electronics Engineering, Kyungpook National University) ;
  • Yoon, Young Jun (School of Electronics Engineering, Kyungpook National University) ;
  • Yoo, Gwan Min (School of Electronics Engineering, Kyungpook National University) ;
  • Kim, Young Jae (School of Electronics Engineering, Kyungpook National University) ;
  • Eun, Hye Rim (School of Electronics Engineering, Kyungpook National University) ;
  • Kang, Hye Su (School of Electronics Engineering, Kyungpook National University) ;
  • Kim, Jungjoon (School of Electronics Engineering, Kyungpook National University) ;
  • Cho, Seongjae (Department of Electronic Engineering, Gachon University,) ;
  • Lee, Jung-Hee (School of Electronics Engineering, Kyungpook National University) ;
  • Kang, In Man (School of Electronics Engineering, Kyungpook National University)
  • 투고 : 2014.04.08
  • 심사 : 2014.08.17
  • 발행 : 2014.10.30

초록

We design and analyze the n-channel junctionless fin-shaped field-effect transistor (JL FinFET) with 10-nm gate length and compare its performances with those of the conventional bulk-type fin-shaped FET (conventional bulk FinFET). A three-dimensional (3-D) device simulations were performed to optimize the device design parameters including the width ($W_{fin}$) and height ($H_{fin}$) of the fin as well as the channel doping concentration ($N_{ch}$). Based on the design optimization, the two devices were compared in terms of direct-current (DC) and radio-frequency (RF) characteristics. The results reveal that the JL FinFET has better subthreshold swing, and more effectively suppresses short-channel effects (SCEs) than the conventional bulk FinFET.

키워드

참고문헌

  1. T. Skotnicki, J. A. Hutchby, T.-J. King, H.-S. P. Wong, and F. Boeuf, "The end of CMOS scaling: Toward the introduction of new materials and structural changes to improve MOSFET performance," IEEE Circuits Devices Mag., vol. 21, no. 1, pp. 16-26, Jan. 2005. https://doi.org/10.1109/MCD.2005.1388765
  2. C. Hu, "Device challenges and opportunities," in Proc. VLSI Symp. Technol., Jun. 2004, pp. 4-5.
  3. S. Borkar, "Circuit techniques for subthreshold leakage avoidance, control, and tolerance," in IEDM Tech. Dig., pp. 421-424, Dec. 2004.
  4. P. K Sahu, S. K. Mohapatra, and K. P. Pradhan, "A Study of SCEs and Analog FOMs in GS-DGMOSFET with Lateral Asymmetric Channel Doping," J. Semicond. Technol. Sci., vol. 13, no. 6, pp. 647-654, Dec. 2013. https://doi.org/10.5573/JSTS.2013.13.6.647
  5. J.-P. Colinge, C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O'Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, "Nanowire transistors without junctions," Nat. Nanotechnol., vol. 5, no. 3, pp. 225-229, Mar. 2010. https://doi.org/10.1038/nnano.2010.15
  6. N. D. Akhavan, I. Ferain, P. Razavi, R. Yu, and J.-P. Colinge, "Improvement of carrier ballisticity in junctionless nanowire transistors," Appl. Phys. Lett., vol. 98, no. 10, pp. 103510-1-103510-3, Mar. 2011. https://doi.org/10.1063/1.3559625
  7. R. Rios, A. Cappellani, M. Armstrong, A. Budrevich, H. Gomez, R. Pai, N. Rahhal-orabi, and K. Kuhn, "Comparison of junctionless and conventional trigate transistors with Lg down to 26 nm," IEEE Electron Device Lett., vol. 32, no. 9, pp. 1170-1172, Sep. 2011. https://doi.org/10.1109/LED.2011.2158978
  8. S. Gundapaneni, S. Ganguly, and A. Kottantharayil, "Bulk planar junctionless transistor (BPJLT): An attractive device alternative for scaling," IEEE Electron Device Lett., vol. 32, no. 3, pp. 261-263, Mar. 2011. https://doi.org/10.1109/LED.2010.2099204
  9. J. S. Lee, S. Cho, B.-G. Park, J. S. Harris, Jr, and I. M. Kang, "Small-Signal Modeling of Gate-All-Around (GAA) Junctionless (JL) MOSFETs for Sub-millimeter Wave Applications," J. Semicond. Technol. Sci., vol. 12, no. 2, pp. 230-239, Jun. 2012. https://doi.org/10.5573/JSTS.2012.12.2.230
  10. C.-H. Park, M.-D. Ko, K.-H. Kim, R.-H. Baek, C.-W. Sohn, C. K. Baek, S. Park, M. J. Deen, Y.-H. Jeong, and J.-S. Lee, "Electrical characteristics of 20-nm junctionless Si nanowire transistors," Solid-State Electron., vol. 73, no. 3, pp. 7-10, Jul. 2012. https://doi.org/10.1016/j.sse.2011.11.032
  11. D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET-A selfaligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320-2325, Dec. 2000. https://doi.org/10.1109/16.887014
  12. Y. Omura, H. Konishi, and K. Yoshimoto, "Impact of Fin Aspect Ratio on Short-Channel Control and Drivability of Multiple-Gate SOI MOSFET's," J. Semicond. Technol. Sci., vol. 8, no. 4, pp. 302-310, Dec. 2008. https://doi.org/10.5573/JSTS.2008.8.4.302
  13. I. J. Park, and C. Shin, "Monte Carlo Simulation Study: the effects of double-patterning versus single-patterning on the line-edge-roughness (LER) in FDSOI Tri-gate MOSFETs," J. Semicond. Technol. Sci., vol. 13, no. 5, pp. 511-515, Oct. 2013. https://doi.org/10.5573/JSTS.2013.13.5.511
  14. F. Najam, S. Kim, and Y. S. Yu, "Gate All Around Metal Oxide Field Transistor: Surface Potential Calculation Method including Doping and Interface Trap Charge and the Effect of Interface Trap Charge on Subthreshold Slope," J. Semicond. Technol. Sci., vol. 13, no. 5, pp. 530-537, Oct. 2013. https://doi.org/10.5573/JSTS.2013.13.5.530
  15. B. Lakshmi and R. Srinivasan, "Effect of gate electrode work function in conventional and junctionless FinFETs," Int. J. Phys. Sci., vol. 7, no. 49, pp. 6246-6254, Dec. 2012.
  16. SILVACO International, ATLAS User's Manual, Apr. 2012.
  17. Process Integration, Devices, and Structures (PIDS) Chapter, International Technology Roadmap for Semiconductors (ITRS), 2012 edition.
  18. M. Schlosser, K. K. Bhuwalka, M. Sauter, T. Zilbauer, T. Sulima, and I. Eisele, "Fringing-Induced Drain Current Improvement in the Tunnel Field-Effect Transistor With High-${\kappa}$ Gate Dielectrics," IEEE Trans. Electron Devices, vol. 56, no. 1, pp. 100-108, Jan. 2009. https://doi.org/10.1109/TED.2008.2008375
  19. A. Nandi, A. K. Saxena, and S. Dasgupta, "Design and Analysis of Analog Performance of Dual-k Spacer Underlap N/P-FinFET at 12 nm Gate Length," IEEE Trans. Electron Devices, vol. 60, no. 5, pp. 1529-1535, May. 2013. https://doi.org/10.1109/TED.2013.2250975
  20. C.-W. Lee, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J.-P. Colinge, "Performance estimation of junctionless multigate transistors," Solid-State Electron., vol. 54, no. 2, pp. 97-103, Feb. 2010. https://doi.org/10.1016/j.sse.2009.12.003
  21. S. Cho, K. R. Kim, B.-G. Park, and I. M. Kang, "RF Performance and Small-Signal Parameter Extraction of Junctionless Silicon Nanowire MOSFETs," IEEE Trans. Electron Devices, vol. 58, no. 5, pp. 1388-1396, May. 2011. https://doi.org/10.1109/TED.2011.2109724
  22. Y. Tsividis, Operation and Modeling of the MOS Transistor, Oxford University Press, New York, USA, 1999, pp. 467-491, 500-504.

피인용 문헌

  1. High-Speed Low-Power Junctionless Field-Effect Transistor with Ultra-Thin Poly-Si Channel for Sub-10-nm Technology Node vol.16, pp.2, 2016, https://doi.org/10.5573/JSTS.2016.16.2.159
  2. Si CMOS Extension and Ge Technology Perspectives Forecast Through Metal-oxide-semiconductor Junctionless Field-effect Transistor vol.16, pp.6, 2016, https://doi.org/10.5573/JSTS.2016.16.6.847
  3. Design of Poly-Si Junctionless Fin-Channel FET With Quantum-Mechanical Drift-Diffusion Models for Sub-10-nm Technology Nodes vol.63, pp.12, 2016, https://doi.org/10.1109/TED.2016.2614990
  4. High-Performance Uniaxial Tensile Strained n-Channel JL SOI FETs and Triangular JL Bulk FinFETs for Nanoscaled Applications vol.64, pp.5, 2017, https://doi.org/10.1109/TED.2017.2679766
  5. Effects of Metal–Interlayer–Semiconductor Source/Drain Contact Structure on n-Type Germanium Junctionless FinFETs vol.65, pp.8, 2018, https://doi.org/10.1109/TED.2018.2847418