References
- Cho, D. and Lee, J. (2012a). Parrondo paradox and stock investment. Korean Journal of Applied Statistics, 25, 543-552. https://doi.org/10.5351/KJAS.2012.25.4.543
- Cho, D. and Lee, J. (2012b). Spatially dependent Parrondo games and stock investments. Journal of the Korean Data & Information Science Society, 23, 867-880. https://doi.org/10.7465/jkdi.2012.23.5.867
- Ethier, S. N. and Lee, J. (2009). Limit theorems for Parrondo's paradox. Electronic Journal of Probability, 14, 1827-1862. https://doi.org/10.1214/EJP.v14-684
- Ethier, S. N. and Lee, J. (2012). Parrondo games with spatial dependence. Fluctuation and Noise Letters, 11, 1250004. https://doi.org/10.1142/S0219477512500046
- Harmer, G. P. and Abbott, D. (2002). A review of Parrondo's paradox. Fluctuation and Noise Letters, 2, R71-R107. https://doi.org/10.1142/S0219477502000701
- Lee, J. (2009). Optimal strategies for collective Parrondo games. Journal of the Korean Data & Information Science Society, 20, 973-982.
- Lee, J. (2011). Paradox in collective history-dependent Parrondo games. Journal of the Korean Data & Information Science Society, 22, 631-641.
- Parrondo, J. M. R. (1996). How to cheat a bad mathematician? In the Workshop of the EEC HC&M Network on Complexity and Chaos, ISI, Torino, Italy.
- Parrondo, J. M. R., Harmer, G. P. and Abbott, D. (2000). New paradoxical games based on Brownian ratchets. Physical Review Letters, 85, 5226-5229. https://doi.org/10.1103/PhysRevLett.85.5226
- Toral, R (2001). Cooperative Parrondo's games. Fluctuation and Noise Letters, 1, 7-12.