DOI QR코드

DOI QR Code

Cooperative effect in space-dependent Parrondo games

공간의존 파론도 게임의 협력 효과

  • Lee, Jiyeon (Department of Statistics, Yeungnam University)
  • Received : 2014.06.04
  • Accepted : 2014.07.31
  • Published : 2014.07.31

Abstract

Parrondo paradox is the counter-intuitive situation where individually losing games can combine to win or individually winning games can combine to lose. In this paper, we compare the history-dependent Parrondo games and the space-dependent Parrondo games played cooperatively by the multiple players. We show that there is a probability region where the history-dependent Parrondo game is a losing game whereas the space-dependent Parrondo game is a winning game.

파론도 역설은 개별로는 지는 게임들이 결합하여 이기게 되거나 개별로는 이기는 게임들이 결합하여 지게 되는 역설적인 현상을 말한다. 여러 명의 게임자들이 둘러앉아 게임을 진행할 때, 임의로 선택된 게임자 본인의 과거 실적에 의해 승패 확률이 정해지는 경우와 게임자의 양옆에 있는 다른 게임자들의 실적에 의해 승패 확률이 정해지는 경우를 비교한다. 게임자들의 수와 승패 확률에 의해 계산되는 기대상금을 비교하여 협력에 의한 파론도 효과가 존재함을 확인한다.

Keywords

References

  1. Cho, D. and Lee, J. (2012a). Parrondo paradox and stock investment. Korean Journal of Applied Statistics, 25, 543-552. https://doi.org/10.5351/KJAS.2012.25.4.543
  2. Cho, D. and Lee, J. (2012b). Spatially dependent Parrondo games and stock investments. Journal of the Korean Data & Information Science Society, 23, 867-880. https://doi.org/10.7465/jkdi.2012.23.5.867
  3. Ethier, S. N. and Lee, J. (2009). Limit theorems for Parrondo's paradox. Electronic Journal of Probability, 14, 1827-1862. https://doi.org/10.1214/EJP.v14-684
  4. Ethier, S. N. and Lee, J. (2012). Parrondo games with spatial dependence. Fluctuation and Noise Letters, 11, 1250004. https://doi.org/10.1142/S0219477512500046
  5. Harmer, G. P. and Abbott, D. (2002). A review of Parrondo's paradox. Fluctuation and Noise Letters, 2, R71-R107. https://doi.org/10.1142/S0219477502000701
  6. Lee, J. (2009). Optimal strategies for collective Parrondo games. Journal of the Korean Data & Information Science Society, 20, 973-982.
  7. Lee, J. (2011). Paradox in collective history-dependent Parrondo games. Journal of the Korean Data & Information Science Society, 22, 631-641.
  8. Parrondo, J. M. R. (1996). How to cheat a bad mathematician? In the Workshop of the EEC HC&M Network on Complexity and Chaos, ISI, Torino, Italy.
  9. Parrondo, J. M. R., Harmer, G. P. and Abbott, D. (2000). New paradoxical games based on Brownian ratchets. Physical Review Letters, 85, 5226-5229. https://doi.org/10.1103/PhysRevLett.85.5226
  10. Toral, R (2001). Cooperative Parrondo's games. Fluctuation and Noise Letters, 1, 7-12.