• 제목/요약/키워드: 정상확률

검색결과 479건 처리시간 0.043초

RCP4.5 기후변화 시나리오와 인공신경망을 이용한 우리나라 확률강우량의 변화 (The change of rainfall quantiles calculated with artificial neural network model from RCP4.5 climate change scenario)

  • 이주형;허준행;김기주;김영오
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.130-130
    • /
    • 2022
  • 기후변화로 인한 기상이변 현상으로 폭우와 홍수 등 수문학적 극치 사상의 출현 빈도가 잦아지고 있다. 따라서 이러한 기상이변 현상에 적응하기 위하여 보다 정확한 확률강우량 측정의 필요성이 증가하고 있다. 대장 지점의 미래 확률강우량 계산을 위해선 기후변화 시나리오의 비정상성을 고려해야 한다. 본 연구는 비정상적인 미래 기후에서 확률강우량이 어떻게 변화하는지 측정하는 것을 목표로 한다. Representative Concentration Pathway (RCP4.5)에 따른 우리나라의 확률강우량 계산에 인공신경망을 포함한 정상성, 비정상성 확률강우량 산정 모델들이 사용되었다. 지점빈도해석(AFA), 홍수지수법(IFM), 모분포홍수지수법(PIF), 인공신경망을 이용한 Quantile & Parameter regression technique(QRT & PRT)이 정상성 자료에 대해 확률강우량을 계산하는 모델로 사용되었으며, 비정상성 자료에 대해서는 비정상성 지점빈도해석(NS-AFA), 비정상성 홍수지수법(NS-IFM), 비정상성 모분포홍수지수법(NS-PIF), 인공신경망을 사용한 비정상성 Quantile & Parameter regression technique(NS-QRT & NS-PRT)이 사용되었다. Rescaled Akaike information criterion(rAIC)를 사용한 불확실성 분석과 적합도 검정을 통해서 generalized extreme value(GEV) 분포형 모델이 정상성 및 비정상성 확률강우량 산정에 가장 적합한 모델로 선정되었다. 이후, 관측자료가 GEV(0,0,0)을 따르고 시나리오 자료가 GEV(1,0,0)을 따르는 지점들을 선택하여 미래의 확률강우량 변화를 추정하였다. 각 빈도해석 모델들은 몬테카를로 시뮬레이션을 통해 bias, relative bias(Rbias), root mean square error(RMSE), relative root mean square error(RRMSE)를 바탕으로 측정하여 정확도를 계산하였으며 그 결과 QRT와 NS-QRT가 각각 정상성과 비정상성 자료로부터 가장 정확하게 확률강우량을 계산하였다. 본 연구를 통해 향후 기후변화의 영향으로 확률강우량이 증가할 것으로 예상되며, 비정상성을 고려한 빈도분석 또한 필요함을 제안하였다.

  • PDF

Power 모형을 이용한 서울지점 비정상성 빈도해석 (Nonstationary Frequency Analysis at Seoul Using a Power Model)

  • 이기춘;김광섭;최규현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.461-461
    • /
    • 2012
  • 본 연구는 서울 지점의 목표연도(2040, 2070, 2100년)별 재현기간에 따른 확률강수량을 산정하기 위해 지속시간 24시간에 대한 연 최대 강수량 자료를 구축하여 비정상성 빈도해석을 수행하였다. 연 최대강수량 자료를 이용해 초기 20년을 기준으로 1년씩 추가한 연 최대 강수량 누적 자료를 구축한 후, 누적 기간별 자료의 평균, 위치매개변수, 축척매개변수를 산정하였다. Gumbel 분포를 이용해 비정상성 빈도해석을 실시하였으며, 각 매개변수의 경우 확률가중모멘트법을 이용해 산정하였다. 산정된 누적평균 강수량과 연도와의 선형회귀분석을 실시한 방법뿐만 아니라 서울 지점이 속한 한강유역의 전 지점들을 이용한 유역의 누적평균 강수량 자료에 대하여 연도와의 Logsitic 회귀분석 및 Power Model을 이용해 서울 지점의 목표연도별 누적평균 강수량을 산정하였고 이를 통해 목표연도별 위치매개변수 및 축척매개변수를 구해 목표연도별 재현기간에 따른 확률강수량을 산정하였다. 선형회귀분석을 이용한 비정상성 빈도해석의 경우, 목표연도가 증가함에 따라 선형적인 증가에 의해 매우 높은 누적평균 강수량이 나타나 확률강수량의 경우에도 정상성임을 가정한 확률강수량에 비해 매우 높게 나타나 타당한 확률강수량이라 함에 한계가 있음을 보였다. 유역의 평균거동과 Logistic 회귀분석을 실시하여 확률강수량을 산정하였을 때에는, 선형 회귀분석에 비해 정상성임을 가정한 확률강수량보다 크게 증가하지 않고 비교적 안정적인 증가가 나타났다. 하지만 Logistic 회귀분석을 이용한 누적평균 강수량 산정에 있어서 목표연도 2040년에 도달하기 전에 미리 수렴하는 형태를 보여 모든 목표연도의 확률강수량이 동일한 값을 가지는 한계가 나타났다. 한강 유역의 평균거동과 Power Model을 이용한 비정상성 빈도해석의 경우, 선형회귀분석 및 Logistic 회귀분석을 통한 비정상성 빈도해석에서 나타난 문제점을 보완할 수 있는 확률강수량이 나타남을 보였다.

  • PDF

비정상성 GEV/Gumbel 주변분포를 이용한 강우자료 이변량 확률분포형 구축 (Construction of Bivariate Probability Distribution with Nonstationary GEV/Gumbel Marginal Distributions for Rainfall Data)

  • 주경원;최소영;김한빈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.41-41
    • /
    • 2016
  • 최근 다변량 확률모형을 이용한 빈도해석이 수문자료 등에 적용되면서 다양하게 연구되고 있으며 다변량 확률모형 중 copula 모형은 주변분포형에 대한 제약이 없어 여러 분야에 걸쳐 활발히 연구되고 있다. 강우자료는 기존 일변량 빈도해석을 수행하기 위하여 사용하던 block maxima 방법 대신 최소무강우시간(inter event time)을 통하여 강우사상을 추출하여 표본으로 사용한다. 또한 기후변화로 인한 강우량의 변화등에 대응하기 위하여 비정상성 Generalized Extreme Value(GEV)와 Gumbel 등의 확률분포형에 대한 연구도 많은 부분 이루어져 있다. 본 연구에서는, Archimedean copula 모형을 이용하여 이변량 확률모형을 구축하면서 여기에 사용되는 주변분포형에 정상성/비정상성 분포형을 적용하였다. 모형의 매개변수는 inference function for margin 방법을 이용하였으며 주변분포형으로는 정상성/비정상성 GEV, Gumbel 모형을 적용하였다. 결과로 정상성/비정상성 경향을 나타내는 지점을 구분하고 각 지점에 대한 정상성/비정상성 주변분포형을 적용한 이변량 확률분포형을 구하였다.

  • PDF

분산학습알고리듬의 이론적 분석 (Theoretical Analysis on the Variance Learning Algorithm)

  • 조영빈;권대갑
    • 한국정밀공학회지
    • /
    • 제14권10호
    • /
    • pp.141-150
    • /
    • 1997
  • 분산은 확률모델을 표현하는 유용한 변수중 하나이다. 입력변수에 대한 함수로 표현되는 조건부 분산을 학습하는 신경회로망에 대한 많은 연구가 있어왔다. VALEAN이라는 신경회로망 역시 이러한 많은 연구중 하나인데 이것은 기본적으로 feedforward 다층 퍼셉트론 구조를 가지며 새롭게 제시된 에너지 함수를 사용하고 있다. 이 논문에서는 이 에너지 모델에 의해 결정되는 피드백에러(델타)가 신경망의 transient, steady state에서 미치는 영향을 다루었다. 과도 상태 분석에서는 델타와 수렴성, 안정성에 관한 내용을 다루고 모의 실험을 하였으며 정상 상태 분석에서는 신경회로망의 정상상태 에러의 크기와 델타의 크기사이의 상관관계에 대하여 다루었다. 학습 알고 리듬이 확률적이므로 정상상태 역시 확률적인 상태를 나타낸다. 따라서 델타의 크기에 따른 정상 상태 에러의 최대치는 확률적인 모델을 가지게 된다. 여기서는 이 확률 관계를 분석적으로 규명하고 이에 따라 원하는 신뢰도로 정상 상태 에러를 제어하기 위해 필요한 델타의 크기를 예측할 수 있는 이론적 배경을 마련하게 된다.

  • PDF

베이지안 방법을 이용한 정상성 및 비정상성 GEV모형의 불확실성 비교 연구 (Comparison Study of Uncertainty between Stationary and Nonstationary GEV Models using the Bayesian Inference)

  • 김한빈;주경원;정영훈;허준행
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.298-298
    • /
    • 2016
  • 최근 기후변화의 영향으로 시간에 따라 자료 및 통계적 특성이 변하는 비정상성이 다양한 수문자료에서 관측됨에 따라 비정상성 빈도해석에 대한 연구가 활발히 진행되고 있다. 비정상성 빈도해석에 사용되는 비정상성 확률 모형은 기존의 매개변수를 시간에 따라 변하는 공변량이 포함된 함수의 형태로 나타내기 때문에, 정상성 확률 모형에 비해 매개변수의 개수가 많으며 복잡한 형태를 가지게 된다. 따라서 본 연구에서는 비정상성 고려 시 모형이 복잡해짐에 따라 매개변수 및 확률 수문량의 불확실성이 어떻게 변하는지 알아보고자 하였다. 베이지안 방법은 매개변수 추정 및 확률 수문량의 산정 뿐 아니라 이에 대한 불확실성을 정량화할 수 있는 방법 중 하나이다. 따라서 베이지안 방법에서 매개변수 추정에 주로 쓰이는 Monte Carlo Markov Chain (MCMC) 방법 중 하나인 Metropolis-Hastings 알고리즘을 이용하여 정상성 및 비정상성 GEV모형에 대한 매개변수 및 확률수문량의 사후분포를 산정하였다. 산정된 사후분포의 사후구간을 통해 각 모형의 불확실성을 정량화하였으며, 계산된 불확실성의 비교를 통해 모형의 복잡성이 불확실성에 미치는 영향을 평가하였다.

  • PDF

비정상성 강우빈도해석법에 의한 확률강우량의 평가 (Evaluation of Probability Rainfalls Estimated from Non-Stationary Rainfall Frequency Analysis)

  • 이창환;안재현;김태웅
    • 한국수자원학회논문집
    • /
    • 제43권2호
    • /
    • pp.187-199
    • /
    • 2010
  • 본 연구는 최근에 개발된 비정상성 강우빈도해석법을 적용하여 추정한 확률강우량에 대한 적용성 및 신뢰성을 평가하였다. 이를 위하여 기상청 관할 강우관측소 중 자료의 증가 경향성이 유의한 4개 지점에 대하여 3가지 형태의 확률강우량을 산정하였다. 첫 번째 확률강우량은 1973-1997년의 관측자료를 가지고 일반적인 강우빈도해석을 적용하여 추정한 확률강우량(SPR1997)이고, 두 번째 확률강우량은 1973-2006년의 관측자료를 가지고 일반적인 강우빈도 해석을 적용하여 추정한 확률강우량(SPR2006), 그리고 세 번째 확률강우량은 1973-1997년의 강우량 자료를 가지고 1997년을 현재시점이라 가정하여 2006년의 확률강우량을 비정상성 강우빈도해석법을 적용하여 추정한 확률강우량(NSPR2006)이다. 2006년을 목표연도라 가정하고, 확률강우량을 비교분석한 결과, 비정상성 강우빈도해석법에 의한 확률강우량(NSPR2006)이 정상성 확률강우량(SPR1997)에 비해 목표연도의 확률강우량에 대하여 적절한 값을 추정하는 것으로 나타났다. 본 연구는 또한 Bootstrap 기법을 이용한 신뢰구간을 비교하여 비정상성 확률강우량 추정에 적용되는 매개변수 추정법에 대한 평가를 수행하였다. 최우도법에 의한 신뢰구간 길이가 확률가중모멘트법에 의한 신뢰구간 길이보다 좁게 나타났으며, 이는 최우도법이 비정상성 강우빈도해석법에 적용되어 신뢰성 높은 확률강우량을 추정하는 것으로 판단된다.

비정상성 확률분포 및 재현기간을 고려한 홍수빈도분석 (Flood Frequency Analysis Considering Probability Distribution and Return Period under Non-stationary Condition)

  • 이상호;김상욱;이영섭;김형배
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.610-610
    • /
    • 2015
  • 수공구조물의 설계에서는 홍수빈도분석을 통해 산정된 특정 재현기간에서의 확률수문량이 설계기준으로 사용된다. 그러나 최근 기후변화로 인해 이상기후 현상이 심해짐에 따라 수문기상자료의 정상성을 가정하는 기존의 홍수빈도분석은 변화되는 수문현상을 적절히 표현하지 못하는 경우가 많다. 본 연구에서는 확률분포의 모수가 시간에 따라 변화하는 비정상성 빈도분석기법을 적용하였으며 확률분포의 모수들을 최우추정법으로 추정하였다. 또한, 분위수 추정과정에서도 비정상성을 고려하여 정상성 가정에서 산정된 재현기간 및 위험도와 비교분석하였다. 확률분포는 GEV 분포를 사용하여 정상성 및 비정상성 모형 4개를 구축하였다. 특히, 비정상성 모형은 위치모수만 선형 경향성을 가지는 경우, 규모모수만 선형경향성을 가지는 경우, 위치 및 규모모수가 선형경향성을 가지는 경우의 3가지로 구분하여 적용하였다. 구축된 4개의 모형 중 적합모형을 선정하기 위해 우도비 검정과 Akaike 정보기준을 사용하였으며 적합모형선정 절차를 체계적으로 구축하고 적용하여 적합모형을 선정하였다. 본 연구에서 구축된 비정상성 홍수빈도분석 기법은 우리나라의 8개 다목적댐 (충주댐, 소양강댐, 안동댐, 임하댐, 합천댐, 대청댐, 섬진강댐, 주암댐)으로부터 취득된 과거 관측 댐 유입량을 대상으로 하여 적용되었다. 우도비 검정과 Akaike 정보기준을 이용한 적합 모형 선정 결과 합천댐과 섬진강댐이 비정상성 GEV 모형에 적합한 것으로 분석되었고, 나머지 지점의 다목적댐들은 정상성 모형에 적합한 것으로 분석되었다. 합천댐과 섬진강댐의 경우 비정상성 가정에서 산정된 재현기간이 정상성 가정에서 산정된 재현기간보다 매우 작게 산정되었으며 확률수문량과 위험도는 크게 산정되었다. 적합모형으로 정상성 모형이 선정된 6개의 다목적댐 중 소양강댐은 Mann-Kendall 비모수 경향성 검정 결과 유의하지는 않지만 비교적 큰 선형경향성을 가지고 있었다. 비록 비정상성 모형이 적합모형으로 선정되지는 않았지만 소양강댐에 비정상성 모형을 가정하여 재현기간과 확률수문량, 위험도를 분석한 결과 정상성 모형 가정에서 산정한 결과와 상당한 차이가 있었다. 이와 같은 결과는 수문자료의 정상성과 비정상성을 고려한 홍수빈도분석이 향후 수공구조물의 설계에 있어서 신뢰성 있는 확률수문량을 결정하는데 도움이 될 것으로 판단된다.

  • PDF

GCM 시나리오 자료를 이용한 비정상성 확률강우량 산정 (Estimation of probability precipitation using non-stationary frequency analysis with GCM outputs)

  • 조현곤;김광섭;김국수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.529-529
    • /
    • 2015
  • 기후변화에 따른 자연재해로 인한 인적, 물적 피해가 매년 증가하고 있으며 기후변동에 관한 정부간 협의체 IPCC(Intergovermental Panel on Climate Change) 5차 보고서에서도 기후변화의 양상이 향후 지속 될 것이라고 전망하고 있다. 이러한 기후변화가 야기하는 부정적인 영향을 저감하기 위해 기후변화 대응을 위한 연구가 세계 곳곳에서 이루어지고 있으며 본 연구에서는 한반도에 적합한 비정상성 빈도해석을 수행하기 위하여 베이지안 기법을 이용하여 산정된 확률강우량과 전지구적 기후변화 시나리오 RCP(2.6, 4,5, 6.0, 8.5)의 다운스케일을 통하여 산정된 확률강우량의 최적 블랜딩을 통하여 비정상성 확률강우량을 산정하였다. 낙동강유역의 1973-2013년 시강우 자료를 이용한 정상성 대비 증감률은 다음과 같다(Table 1).

  • PDF

Gumbel 분포를 이용한 전국의 비정상성 빈도 해석 (National Nonstationary Frequence Analysis Using for Gumbel Distribution)

  • 김광섭;이기춘
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.379-379
    • /
    • 2011
  • 본 연구는 우리나라 전국 기상관측소 중 1973년부터 2009년까지의 시 강수자료가 구축되어 있는 기상관측소 55개 지점에 대하여 비정상성 빈도해석을 수행하였다. 각 지점에 대하여 지속시간 1시간, 24시간에 대한 연 최대 강수량 자료를 구축하여 초기 20년을 기준으로 1년씩 추가한 연 최대 강수량 누적 자료를 생성하고, 생성된 기간별 자료의 평균, 위치매개변수, 축척매개변수를 산정하였으며, 위치매개변수와 축척매개변수는 확률가중모멘트법을 사용하여 산정하였다. 산정된 연 최대 평균 누적 강수량과 연도와의 선형 회귀식을 산정하여 목표연도별(2040, 2070, 2100년) 평균 강수량을 산정하였고, 위치매개변수와 축척매개변수도 평균 누적 강수량과의 선형 회귀식을 산정함으로써, 목표연도에 해당하는 각 매개변수를 산정하였다. 또한 산정된 목표연도별 평균 강수량, 위치매개변수와 축척매개변수를 이용해 확률강수량을 산정하였다. 비정상성 빈도해석을 수행하여 산정된 55개 지점에 대한 목표연도별 확률강수량을 Inverse Distance Weighted(IDW) 보간법을 사용하여 전국의 확률강수량을 공간적으로 표현하였다. 전국단위의 비정상성 빈도해석을 실시한 결과, 전체적으로 각 목표연도별 확률강수량이 증가하는 것으로 나타났으나, 일부 감소하는 지역도 나타났다. 경기도와 강원도 등 중부지역에서 확률강수량의 증가가 큰 것으로 나타났으며, 특히 강원도(강릉, 인재 등) 지역에서 확률강수량의 증가폭이 가장 크게 나타났다. 또한 남해지역에서는 대부분 확률강수량이 감소하는 것으로 나타났고, 그중에서 전라남도 남해안 부근(장흥 등)에 확률강수량의 감소가 가장 크게 나타났으며, 경북지역과 전북지역 부근에서는 증가 또는 감소의 차이가 미비하게 나타났다. 하지만 목표연도 2070년과 2100년에 대하여 산정된 확률강수량으로부터 선형 회귀식을 통해 목표연도별 평균 강수량, 위치매개변수, 축척매개변수를 추정하여 확률강수량을 산정하는 것에 한계가 있음을 보여주었다.

  • PDF

확률강우량의 정상성 판단: 1. 기존 방법의 적용 및 평가 (On the Stationarity of Rainfall Quantiles: 1. Application and Evaluation of Conventional Methodologies)

  • 정성인;유철상;윤용남
    • 한국방재학회 논문집
    • /
    • 제7권5호
    • /
    • pp.79-88
    • /
    • 2007
  • 본 연구에서는 강우량 자체 및 확률강우량의 통계학적 정상성을 판단하였다. 사계열의 정상성을 판단하는 대표적인 방법인 Cox-Stuart의 추세검정과 Dickey-Fuller의 단위근 검정 방법이 적용되었으며, 특히 확률 강우량의 정상성 평가상의 문제점을 평가하였다. 결과적으로, 먼저 서울지점 강우량 자료에 대한 분석에서는 강우량이 증가하거나 감소하는 추세가 없다는 판단을 할 수 있었고, 아울러 단위근 검정에서도 정상적인 시계열이라는 결론을 얻을 수 있었다. 그러나 Cox-Stuart 검정에 의하면 확률강우량이 전체적으로 어떤 상승 또는 하향의 추세가 있는지에 대해서 일관된 판단을 하기가 어려졌다. 그러나 Dickey-Fuller의 단위근 검정에서는 확률강우량이 비정상시계열임을 판단할 수 있었다. 이러한 결과는 근본적으로 강우량과 확률강우량의 차이에서 비롯된 것이다. 즉, 강우는 무작위 변량으로서 어떤 경향성이나 비정상성을 찾기 힘들다. 반대로 확률강우량은 계산시점까지 관측된 모든 자료를 고려하여 추정되므로 전 후의 값의 상관성이 매우 커지게 된다. 즉, 정상시계열인 강우자료가 연속적으로 추가되며 확률강우량이 추정되므로 전 값이 높은 상관성이 가능하다, 따라서 확률강우량이 비정상 시계열로 판단되는 것은 본 연구에서 적용된 판단기법으로는 당연한 결과라 할 수 있다.