DOI QR코드

DOI QR Code

Comparative Analysis on the Design Conditions for Offshore Wind Power Structures in the Coastal Sea of Korea

한국 연안 해상풍력 구조물의 설계조건 비교분석

  • Ko, Dong Hui (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Jeong, Shin Taek (Department of Civil and Environmental Engineering, Wonkwang University) ;
  • Cho, Hongyeon (Marine Environments and Conservation Research Division, Korea Institute of Ocean Science and Technology) ;
  • Kang, Keum Seok (KEPCO Research Institute)
  • 고동휘 (원광대학교 토목환경공학과) ;
  • 정신택 (원광대학교 토목환경공학과, 원광대학교 부설 공업기술개발연구소) ;
  • 조홍연 (한국해양과학기술원, 해양환경보전연구부) ;
  • 강금석 (한국전력공사 전력연구원)
  • Received : 2014.01.30
  • Accepted : 2014.02.26
  • Published : 2014.02.28

Abstract

Offshore wind power structures are subject to coastal hydrodynamic loading such as wind and wave loads. A considerable number of turbines have been installed in Europe, but so far none in Korea. Interest in offshore wind energy is growing in Korea, and it is expected that projects will reach the design stage in the near future. This paper discusses the level of structural reliability implied by the design rules of ABS(2010, 2013) and IEC(2009). Metocean conditions in 4 Korean seas(Gunsan, HeMOSU 1, Mokpo, Jeju) were used in the calibrations to calculate the aerodynamic and hydrodynamic loads as well as the structural responses of the typical designs of offshore wind turbines. Due to the higher variability of the wind and wave climate in hurricane-prone areas, applying IEC strength design criteria in combination with Korea west sea conditions could result in a design with much lower reliability index than what is anticipated from a design in European waters. To achieve the same level of safety as those in European waters, application of ABS 100 year design standards are recommended. Level-1 reliability-based design suitable for the Korean sea state conditions should be introduced because the IEC standards does not consider the typhoon effects in depth and the ABS standards is a WSD design method. In addition, the design equation should be established based on the statistical characteristics of the wind and wave loads of the Korean sea areas.

해상풍력 구조물은 풍속과 파고 등 유체동역학적 하중의 영향을 받는다. 유럽의 경우 다수의 해상풍력발전기가 설치되어 있고, 한국의 경우에는 설치사례가 없으나, 해상풍력발전에 대한 관심이 고조되어 조만간 설계단계가 도래할 것으로 예상된다. 본 연구에서는 ABS(2010, 2013)와 IEC(2009)에서 제공하는 설계 기준을 이용하여 구조물의 신뢰성 수준을 검토하였다. 한국 연안 4개 지점(군산, HeMOSU 1호, 목포, 제주)의 해상조건을 사용하여 바람과 파랑하중, 해상풍력발전 구조물의 응답에 대하여 적용하였다. 검토 결과, 태풍이 우세한 해역의 경우 큰 변동성 때문에 IEC 설계기준을 한국 연안에 적용하는 경우, 유럽 해상에 적용한 결과보다 신뢰도 지수가 낮게 산정되었다. 유럽의 경우와 유사한 수준의 신뢰도 확보를 위해서는 ABS(2010, 2013) 100년 빈도 설계기준을 적용하는 것이 바람직한 것으로 파악되었다. 그러나, IEC 기준은 태풍의 영향에 대한 고려가 미흡하고, ABS 기준은 WSD 설계법이므로 국내 실정에 맞는 Level 1 신뢰성 설계법 도입이 필요하며, 국내 바람과 파랑 하중에 대한 통계적 특성을 고려하여 설계방정식을 설정하는 것도 필요하다.

Keywords

References

  1. American Bureau of Shipping(ABS), (2010). Guide for Building and Classing Offshore Wind turbine Installations.
  2. American Bureau of Shipping(ABS), (2011). Design Standards for Offshore Wind Farms.
  3. American Bureau of Shipping(ABS), (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.
  4. American Petroleum Institute(API), (2007). API RP 2A-WSD:Recommended Practice for Planning Designing and Constructing Fixed Offshore structures -Working Stress Design, 21st Edition (with Errata and Supplement in 2002, 2005 and 2007).
  5. Det Norske Veritas (DNV). (2010). OS-J101 Design of offshore wind turbine structures.
  6. Germanischer Llyod (GL), (2005). Guideline for the certification of offshore wind turbines.
  7. International Electrotechnical Commission (IEC), (2009). IEC 61400-3: Wind turbines - Part 3: Design Requirements for Offshore Wind turbines.
  8. International Organization for Standardization (ISO), (2007). ISO 19902: Petroleum and Natural Gas Industries - Fixed Steel Offshore Structures.
  9. Jeong, S.-T., Ko, D.-H., Park, T.-H., Kim, J.-D. and Cho, H.-Y., (2010). Development of Reliability-Based Design Program based on the MATLAB GUI Environment. Journal of korean society of coastal and ocean engineers, 22(6), 415-422 (in Korean).
  10. Joint Committee on Structural Safety (JCSS), (2001). Probabilistic Model Code Part 1 - Basic of Design.
  11. Ko, D.-H., Jeong, S.-T., Cho, H.-Y. and Kang, K.-S., (2014). Extreme Offshore Wind Estimation using Typhoon Simulation. Submitted to Journal of Korean Society of Coastal and Ocean Engineers. (in Korean). https://doi.org/10.9765/KSCOE.2014.26.1.16
  12. Korea Ocean Research & Development Institute(KORDI) (2005). The report of estimation for deep-sea design wave in Korean coastal seas II. (in Korean).
  13. MMI Engineering Inc., 2009. Comparative Study of OWTG Standards. Comparative Study of Offshore Wind Turbine Standards JIP Report.
  14. Nowak, A.S. and Collins, K.R. (2000). Reliability of Structures, McGraw Hill.
  15. Yu, Q., Samuelsson, L. and Tan, P., 2011. Design Considerations for Offshore Wind Turbines in US Waters - the American Way. Offshore Technology Conference (OTC), Houston, Texas, Paper No. OTC 21870.