DOI QR코드

DOI QR Code

Effect of Temperature, Pressure, and Air Flow Rate on VOCs Desorption for Gasoline Vapor Recovery

유증기 회수를 위한 VOCs 탈착에 미치는 온도, 압력 및 공기유량의 영향

  • Lee, Song-Woo (Department of Chemical Engineering., Pukyong National University) ;
  • Na, Young-Soo (Segye Chem. Co., Ltd., R & D Center) ;
  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Lee, Min-Gyu (Department of Chemical Engineering., Pukyong National University)
  • Received : 2013.02.18
  • Accepted : 2013.05.09
  • Published : 2013.09.30

Abstract

Desorption characteristics of VOCs were investigated for the effective recovery of gasoline vapor. The adsorption capacity and desorption capacity were excellent at relatively low temperatures. The differences in the desorption capacity were not large in the condition; desorption temperature $25^{\circ}C$, desorption pressure 760 mmHg, inlet air flow rate 0.5 L/min, but were relatively great in the condition; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min. The desorption ability of pentane was increased to about 81.4%, and the desorption ability of hexane was increased to about 102%, also the desorption ability of toluene was increased to about 156.7% by changes of temperature, pressure, inlet air flow rate in the experimental conditions. The optimum desorption condition for the effective recovery of VOCs was in the conditions; desorption temperature $0^{\circ}C$, desorption pressure 60 mmHg, inlet air flow rate 1.0 L/min.

Keywords

References

  1. Chue, K., Park, Y. K., Jeon, J. K., 2004, Development of adsorption buffer and pressure swing adsorption (PSA) unit for gasoline vapor recovery, Korean J. Chem. Eng,. 21(3), 676-679. https://doi.org/10.1007/BF02705504
  2. Khan, F. I., Ghoshal, A. K., 2000, Removal of volatile organic compound from polluted air, J. of Loss Prevention in the Process Industries, 13, 527-545. https://doi.org/10.1016/S0950-4230(00)00007-3
  3. Lee, H. J., Lee, H. K., Park, G. I., Ro, S. G., Choi, H. S., Lee, Y. T., 1999, Adsorption property of water vapor on the modified natural zeolite, J. Korean Soc. Environ. Engrs, 21(4), 643-651.
  4. Lee, M. G., Lee, S. W., Lee, S. H., 2006, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixedbed reactor, Korean J. Chem. Eng., 23(5), 773-778. https://doi.org/10.1007/BF02705926
  5. Lee, S. W., Cheon, J. K., Park, H. J., Lee, M. G., 2008a, Adsorption characteristics of binary vapors among acetone, MEK, benzene, and toluene, Korean J. Chem. Eng., 25(5), 1154-1159. https://doi.org/10.1007/s11814-008-0190-3
  6. Lee, S. W., Kam, S. K., Lee, M. G., 2007, Comparison of breakthrough characteristics for binary vapors composed of acetone and toluene based on adsorption intensity in activated carbon fixed-bed reactor, J. Ind. Eng. Chem., 13(6), 911-916.
  7. Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2011a, Comparison of adsorption characteristics on zeolite 13X and silica-aluminar, J. Environ. Sci., 20(6), 729-736. https://doi.org/10.5322/JES.2011.20.6.729
  8. Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2011b, Adsorption characteristics of water vapor on zeolite, J. Environ. Sci., 20(5), 667-672. https://doi.org/10.5322/JES.2011.20.5.667
  9. Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2012a, Comparison of adsorption and desorption characteristics of acetone vapor and toluene vapor on activated carbons according to pore structure, J. Environ. Sci., 21(10), 1195-1202. https://doi.org/10.5322/JES.2012.21.10.1195
  10. Lee, S. W., Na, Y. S., An, C. D., Lee, M. G., 2012b, Comparison of desorption characteristics of water vapor on the types of zeolites, J. Environ. Sci., 21(12), 1463-1468. https://doi.org/10.5322/JES.2012.21.12.1463
  11. Lee, S. W., Park, H. J., Lee, S. H., Lee, M. G., 2008b, Comparison of adsorption characteristics according to polarity difference of acetone vapor and toluene vapor on silica-aluminar fixed-bed reactor, J. Ind. Eng. Chem., 13, 10-17. https://doi.org/10.1016/j.jiec.2007.08.001
  12. Popescu, S., Joly, J. P., Carre, J., Danatoiu, C., 2003, Dynamic adsorption and temperature-programed desorption of VOCs (toluene, butyl acetate and butanol) on activated carbons, Carbon, 41, 739-748. https://doi.org/10.1016/S0008-6223(02)00391-3
  13. San Miguel, G., Lambert, S. D., Graham, J. D., 2001, The regeneration of field-spent granular-activated carbon, Wat. Res., 35(11), 2740-2748. https://doi.org/10.1016/S0043-1354(00)00549-2
  14. Shie, J. L., Lu, C. Y., Chang, C. Y., 2003, Recovery of gasoline vapor by a combined process of two-stage dehumidification and condensation, J. Chin. Inst. Chem. Engrs., 34(6), 605-616.

Cited by

  1. Comparisons of Adsorption-Desorption Characteristics of Major 10 Kinds Components Consisting of Gasoline Vapor vol.23, pp.9, 2014, https://doi.org/10.5322/JESI.2014.23.9.1593