DOI QR코드

DOI QR Code

Calculation of Potential Energy Curves of Excited States of Molecular Hydrogen by Multi-Reference Configuration-interaction Method

  • Lee, Chun-Woo (Department of Chemistry, Ajou University) ;
  • Gim, Yeongrok (Department of Chemistry, Ajou University) ;
  • Choi, Tae Hoon (Department of Chemical Engineering Education, Chungnam National University)
  • Received : 2013.02.19
  • Accepted : 2013.03.20
  • Published : 2013.06.20

Abstract

For the excited states of a hydrogen molecule up to n = 3 active spaces, potential energy curves (PECs) are obtained for values of the internuclear distance R in the interval [0.5, 10] a.u. within an accuracy of $1{\times}10^{-4}$ a.u. (Hartree) compared to the accurate PECs of Kolos, Wolniewicz, and their collaborators by using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. It is found that the accuracy of the PECs can be further improved beyond $1{\times}10^{-4}$ a.u. for that R interval by including the Rydberg basis functions with angular momentum quantum numbers higher than l = 4.

Keywords

References

  1. Lee, C. W. Bull. Korean Chem. Soc. 2012, 33, 2657. https://doi.org/10.5012/bkcs.2012.33.8.2657
  2. Lefebvre-Brion, H.; Field, R. W. The Spectra and Dynamics of Diatomic Molecules; Rev. and enlarged ed.; Elsevier Academic Press: Amsterdam, Boston, 2004.
  3. Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1965, 43, 2429. https://doi.org/10.1063/1.1697142
  4. Kolos, W.; X Wolniewicz, L. J. Chem. Phys. 1966, 45, 509. https://doi.org/10.1063/1.1727598
  5. Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1968, 48, 3672. https://doi.org/10.1063/1.1669668
  6. Kolos, W.; Wolniewicz, L. J. Chem. Phys. 1969, 50, 3228. https://doi.org/10.1063/1.1671545
  7. Kolos, W.; Rychlewski, J. J. Mol. Spectrosc. 1976, 62, 109. https://doi.org/10.1016/0022-2852(76)90268-X
  8. Kolos, W. J. Mol. Spectrosc. 1976, 62, 429. https://doi.org/10.1016/0022-2852(76)90281-2
  9. Kolos, W.; Rychlewski, J. J. Mol. Spectrosc. 1977, 66, 428. https://doi.org/10.1016/0022-2852(77)90301-0
  10. Wolniewicz, L.; Dressler, K. J. Chem. Phys. 1988, 88, 3861. https://doi.org/10.1063/1.453888
  11. Staszewska, G.; Wolniewicz, L. J. Mol. Spectrosc. 2002, 212, 208. https://doi.org/10.1006/jmsp.2002.8546
  12. Wolniewicz, L.; Staszewska, G. J. Mol. Spectrosc. 2003, 220, 45. https://doi.org/10.1016/S0022-2852(03)00121-8
  13. Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1988, 89, 5803. https://doi.org/10.1063/1.455556
  14. Andersson, K.; Malmqvist, P. A.; Roos, B. O. J. Chem. Phys. 1992, 96, 1218. https://doi.org/10.1063/1.462209
  15. Stanton, J. F.; Bartlett, R. J. J. Chem. Phys. 1993, 98, 7029. https://doi.org/10.1063/1.464746
  16. Werner, H.-J.; Knowles, P. J. J. Chem. Phys. 1985, 82, 5053. https://doi.org/10.1063/1.448627
  17. Knowles, P.; Werner, H.-J. Theoret. Chim. Acta 1992, 84, 95. https://doi.org/10.1007/BF01117405
  18. Werner, H.-J. Adv. Chem. Phys. 1987, 69, 1. https://doi.org/10.1002/9780470142943.ch1
  19. Dunning Jr., T. H.; Hay, P. J. In Methods of Electronic Structure Theory; Schaefer III, H. F., Ed.; Plenum Press: New York, 1977; Vol. 2, p 1.
  20. Roos, B. O.; Andersson, K.; Fulscher, M. P.; Malmqvist, P. A.; Serrano-Andrés, L.; Pierloot, K.; Merchan, M. In Adv. Chem. Phys.; John Wiley & Sons, Inc.: 1996; p 219.
  21. Kaufmann, K.; Baumeister, W.; Jungen, M. J. Phys. B 1989, 22, 2223. https://doi.org/10.1088/0953-4075/22/14/007
  22. MOLPRO, version 2012.1, a package of ab initio programs, Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schutz, M.; others; see http://www.molpro.net.
  23. Werner, H.-J.; Meyer, W. J. Chem. Phys. 1980, 73, 2342. https://doi.org/10.1063/1.440384
  24. Werner, H.-J.; Reinsch, E.-A. J. Chem. Phys. 1982, 76, 3144. https://doi.org/10.1063/1.443357
  25. Roos, B. Chem. Phys. Lett. 1972, 15, 153. https://doi.org/10.1016/0009-2614(72)80140-4
  26. Dunning, T. H. J. Chem. Phys. 1989, 90, 1007. https://doi.org/10.1063/1.456153
  27. Knowles, P. J.; Werner, H.-J. Chem. Phys. Lett. 1988, 145, 514. https://doi.org/10.1016/0009-2614(88)87412-8
  28. Werner, H.-J.; Meyer, W. J. Chem. Phys. 1981, 74, 5794. https://doi.org/10.1063/1.440892
  29. Hazi, A. U.; Rice, S. A. J. Chem. Phys. 1967, 47, 1125. https://doi.org/10.1063/1.1711997
  30. Lefebvre-Brion, H.; Moser, C. M. J. Chem. Phys. 1965, 43, 1394. https://doi.org/10.1063/1.1696931
  31. Hochlaf, M.; Ndome, H.; Hammoutene, D.; Vervloet, M. J. Phys. B 2010, 43, 245101. https://doi.org/10.1088/0953-4075/43/24/245101
  32. Andersson, K.; Malmqvist, P. A.; Roos, B. O.; Sadlej, A. J.; Wolinski, K. J. Phys. Chem. 1990, 94, 5483. https://doi.org/10.1021/j100377a012
  33. Mulliken, R. S. Acc. Chem. Res. 1976, 9, 7. https://doi.org/10.1021/ar50097a002
  34. Atabek, O.; Dill, D.; Jungen, C. Phys. Rev. Lett. 1974, 33, 123. https://doi.org/10.1103/PhysRevLett.33.123
  35. Mulliken, R. S. J. Am. Chem. Soc. 1964, 86, 3183. https://doi.org/10.1021/ja01070a001
  36. Mulliken, R. S. J. Am. Chem. Soc. 1966, 88, 1849. https://doi.org/10.1021/ja00961a001

Cited by

  1. High temperature partition function – a key role of ro-vibrational coupling and inflection points vol.115, pp.20, 2017, https://doi.org/10.1080/00268976.2017.1334132
  2. Chemical bonding in excited states: Energy transfer and charge redistribution from a real space perspective vol.38, pp.13, 2017, https://doi.org/10.1002/jcc.24769
  3. Studies of excited states of HeH by the multi-reference configuration–interaction method vol.46, pp.21, 2013, https://doi.org/10.1088/0953-4075/46/21/215001
  4. Exotic Bonding Regimes Uncovered in Excited States vol.25, pp.52, 2013, https://doi.org/10.1002/chem.201902369
  5. Systematic Generation of the Dunham Coefficients Using Symbolic Mathematics Software vol.125, pp.4, 2021, https://doi.org/10.1021/acs.jpca.0c10696