DOI QR코드

DOI QR Code

Optical Properties and Field Emission of ZnO Nanorods Grown on p-Type Porous Si

  • Park, Taehee (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Park, Eunkyung (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Ahn, Juwon (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Lee, Jungwoo (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Lee, Jongtaek (Department of Chemistry and Research Institute for Natural Science, Hanyang University) ;
  • Lee, Sang-Hwa (Department of Physics, Hanyang University) ;
  • Kim, Jae-Yong (Department of Physics, Hanyang University) ;
  • Yi, Whikun (Department of Chemistry and Research Institute for Natural Science, Hanyang University)
  • Received : 2013.01.29
  • Accepted : 2013.03.20
  • Published : 2013.06.20

Abstract

N-type ZnO nanorods were grown on p-type porous silicon using a chemical bath deposition (CBD) method (p-n diode). The structure and geometry of the device were examined by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD) while the optoelectronic properties were investigated by UV/Vis absorption spectrometry as well as photoluminescence and electroluminescence measurements. The field emission (FE) properties of the device were also measured and its turn-on field and current at 6 $V/{\mu}m$ were determined. In principle, the growth of ZnO nanorods on porous siicon for optoelectronic applications is possible.

Keywords

References

  1. Bunn, C. W. Proc. Phys. Soc. London 1935, 47, 835. https://doi.org/10.1088/0959-5309/47/5/307
  2. Gudiksen, M. S.; Lauhon, L. J.; Smith, D. C.; Lieber, C. M. Nature 2002, 415, 617. https://doi.org/10.1038/415617a
  3. Haung, Y.; Daun, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Libber, C. M. Science 2001, 294, 1313. https://doi.org/10.1126/science.1066192
  4. Wagner, R. S.; Eliss, W. C. Appl. Phys. Lett. 1964, 4, 89. https://doi.org/10.1063/1.1753975
  5. Lee, W.; Jeong, M. C.; Myoung, J. M. Nanotechnology 2004, 15,144.
  6. Drici1, A.; Djeteli, G.; Tchangbedji, G.; Derouiche, H.; Jondo, K.; Napo, K.; Bernede, J. C.; Ouro-Djobo, S.; Gbagba, M. Phys. Stat. Sol. (A) 2004, 201, 1528. https://doi.org/10.1002/pssa.200306806
  7. Vergeis, M. A.; Mifsud, A.; Serna, C. J. J. Chem. Soc. Fara. Transac. 1990, 86, 959. https://doi.org/10.1039/ft9908600959
  8. Ko, H. J.; Chen, Y. F.; Zhu, Z.; Yao, T.; Kobayashi, I.; Uchiki, H. Appl. Phys. Lett. 2000, 76, 1905. https://doi.org/10.1063/1.126207
  9. Ohtomo, A.; Tamura, K.; Saikusa, K.; Takahashi, T.; Makino, T.; Segawa, Y.; Koinuma, H.; Kawasaki, M. Appl. Phys. Lett. 1999, 75, 2635. https://doi.org/10.1063/1.125102
  10. Zhang, W. H.; Shi, J. L.; Wang, L. Z.; Yan, D. S. Chem. Mater. 2000, 12, 1408. https://doi.org/10.1021/cm990740a
  11. Li, Y.; Meng, G. W.; Zhang, L. D.; Phillipp, F. F. Appl. Phys. Lett. 2000, 76, 2011. https://doi.org/10.1063/1.126238
  12. Look, D. C. J. Electron. Mater. 2006, 35, 1299. https://doi.org/10.1007/s11664-006-0258-y
  13. Ahsanulhaq, Q.; Umar, A.; Hahn, Y. B. Nanotechnology 2007, 18, 115603. https://doi.org/10.1088/0957-4484/18/11/115603
  14. Xu, D.; Guo, G.; Gui, L.; Tang, Y.; Shi, Z.; Jin, Z.; Gu, Z.; Liu, W.; Li, X.; Zhang, G. Appl. Phys. Lett. 1999, 75, 481. https://doi.org/10.1063/1.124415
  15. Sohn, J. I.; Lee, S.; Song, Y.-H.; Choi, S.-Y.; Cho, K.-I.; Nam, K.- S. Appl. Phys. Lett. 2001, 78, 901. https://doi.org/10.1063/1.1335846
  16. Li, J.; Lei, W.; Zhang, X.; Wang, B.; Ba, L. Solid State Electron. 2004, 48, 2147. https://doi.org/10.1016/j.sse.2004.06.011
  17. Ahsanulhaq, Q.; Umar, A.; Hahn, Y. B. Nanotechnology 2007, 18, 115603. https://doi.org/10.1088/0957-4484/18/11/115603
  18. Ieki, H.; Tanaka, H.; Koike, J.; Nishikawa, T. IEEE MTT-S Dig. 1996, 409.
  19. Ondo-Ndong, R.; Pascal-Delannoy, F.; Boyer, A.; Giani A.; Foucaran, A. Material Science and Engineering: B 2003, 97, 68. https://doi.org/10.1016/S0921-5107(02)00406-3
  20. Fragalà, M. E.; Mauro, A. D.; Litrico, G.; Grassia, F.; Malandrino, G.; Foti, G. Cryst. Eng. Comm. 2009, 11, 2770. https://doi.org/10.1039/b914541a
  21. Sriparna, C.; Smita, G.; Avesh, K. T.; Pushan, A. J. Nanosci. Nanotechnol. 2011, 11, 10379. https://doi.org/10.1166/jnn.2011.5197
  22. Caglar, M.; Ilican, S.; Caglar, Y. Thin Solid Films. 2009, 517, 5023. https://doi.org/10.1016/j.tsf.2009.03.037
  23. Wu, X. L.; Siu, G. G.; Fu, C. L.; Ong, H. C. Appl. Phys. Lett. 2001, 78, 2285. https://doi.org/10.1063/1.1361288
  24. Umar, A.; Karunagaran, B.; Suh, E. K.; Hahn, Y. B. Nanotechnology 2006, 17, 4072. https://doi.org/10.1088/0957-4484/17/16/013
  25. Dai, L.; Chen, X. L.; Wang, W. J.; Zhou, T.; Hu, B. Q. J. Phys.: Condens. Matter 2003, 15, 2221. https://doi.org/10.1088/0953-8984/15/13/308
  26. Vanheusden, K.; Seager, C. H.; Warren, W. L.; Tallant D. R.; Voigt, J. A. J. Appl. Phys. 1996, 79, 7938.
  27. Fang, X.; Li, J.; Zhao, D.; Shen, D.; Li, B.; Wang, X. J. Phys. Chem. C 2009, 113, 21208. https://doi.org/10.1021/jp906175x
  28. Dimova-Malinovska, D.; Nikolaeva, M. Vacuum 2003, 69, 227.
  29. Li, L.; Fang, X. S.; Chew, H. G.; Zheng, F.; Liew, T. H.; Xu, X. J.; Zhang, Y. X.; Pan, S. S.; Li, G. H.; Zhang, L. D. Adv. Funct. Mater. 2008, 18, 1080. https://doi.org/10.1002/adfm.200701051
  30. Pan, H.; Zhu, Y.; Sun, H.; Feng, Y.; Sow, C. H.; Lin, J. Nanotechnology 2006, 17, 5096. https://doi.org/10.1088/0957-4484/17/20/009
  31. Hong, W. K.; Sohn, J. I.; Song, S.; Lee, T. Nano Lett. 2008, 8, 950. https://doi.org/10.1021/nl0731116

Cited by

  1. Growth of Zinc Oxide Nanostructures on Electrochemically-Etched p-Type Silicon(100) Substrate by Chemical Bath Deposition Method vol.548-549, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.548-549.358
  2. Application of porous silicon microcavity to enhance photoluminescence of ZnO/PS nanocomposites in UV light emission vol.130, pp.None, 2017, https://doi.org/10.1016/j.ijleo.2016.11.131