• 제목/요약/키워드: Excited Rydberg states

검색결과 6건 처리시간 0.016초

Calculation of Potential Energy Curves of Excited States of Molecular Hydrogen by Multi-Reference Configuration-interaction Method

  • Lee, Chun-Woo;Gim, Yeongrok;Choi, Tae Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1771-1778
    • /
    • 2013
  • For the excited states of a hydrogen molecule up to n = 3 active spaces, potential energy curves (PECs) are obtained for values of the internuclear distance R in the interval [0.5, 10] a.u. within an accuracy of $1{\times}10^{-4}$ a.u. (Hartree) compared to the accurate PECs of Kolos, Wolniewicz, and their collaborators by using the multi-reference configuration-interaction method and Kaufmann's Rydberg basis functions. It is found that the accuracy of the PECs can be further improved beyond $1{\times}10^{-4}$ a.u. for that R interval by including the Rydberg basis functions with angular momentum quantum numbers higher than l = 4.

Study of the Valence and Rydberg States of a Lithium Dimer by the Multi-reference Configuration-interaction Method

  • Lee, Chun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권5호
    • /
    • pp.1422-1432
    • /
    • 2014
  • Convergent all-electron multi-reference configuration-interaction (MRCI) calculations are performed for a lithium dimer with Kaufmann's Rydberg basis functions. A comparison of the results of these calculations with those of the effective core potential/core polarization potential (ECP/CPP) method and experimental data reveals the deficiency of the all-electron ab initio method. The deficiency is related to the mere 51.9% attainment of electron correlation for the ground state. The percent attainment of electron correlation for the first excited state is slightly better than that for the ground state, preventing us from obtaining better agreements with experimental data by means of increasing the size of basis sets. The Kaufmann basis functions are then used with the ECP/CPP method to obtain the accurate convergent potential energy curves for the $^1\prod_u$ states correlated to Li(2p) + Li(2p) and Li(2s) + Li(n = 2, 3, 4). Quantum defect curves (QDCs) calculated for both the $X^2\sum_g$ and 1 $^2\prod_u$ states of the $Li{_2}^+$ ion and the Lu-Fano plot reveal a strong series-series interaction between the two $2snp{\pi}$ and $2pnp{\pi}$ Rydberg series. The QDCs are then used to resolve assignment problems in the literature. The reassignments, performed by Jedrzejewski-Szemek et al., of the dissociation product of the D $^1\prod$ state from (2s+3d) to (2s+3p) and that of the 6 $^1\prod_u$ from (2s+4d) to (2s+4p) are found to be incorrect. It may be more natural to assign their $2snp{\pi}$ Rydberg series as a $2snd{\pi}$ series. The state, assigned as 5p $^1\prod_u$ by Ross et al. and 4d $^1\prod$ by Jedrzejewski-Szemek et al., is assigned as the 7 $^1\prod_u$ state, correlated to the Li(2s) + Li(4f) limit.

The Construction of Semi-diabatic Potential Energy Surfaces of Excited States for Use in Excited State AIMD Studies by the Equation-of-Motion Coupled-Cluster Method

  • Baeck, Kyoung-Koo;Martinez, Todd J.
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.712-716
    • /
    • 2003
  • The semi-diabatic potential energy surfaces (PESs) of the excited states of polyatomic molecules can be constructed for use in ab initio molecular dynamics (AIMD) studies by relying on the continuity of the electronic energy, oscillator strength, and spherical extent of an excited state along with first derivatives of these quantities as computed by using the equation-of-motion coupled-cluster (EOM-CC) method. The semidiabatic PESs of both the π → $π^*$ valence excited state and the 3s-type Rydberg state of ethylene are presented and discussed in this paper, in conjunction with some of the AIMD results we obtained for these states.

Fabrication of High-purity Rb Vapor Cell for Electric Field Sensing

  • Jae-Keun Yoo;Deok-Young Lee;Sin Hyuk Yim;Hyun-Gue Hong;Sun Do Lim;Seung Kwan Kim;Young-Pyo Hong;No-Weon Kang;In-Ho Bae
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.207-212
    • /
    • 2023
  • In this paper, we introduce our system for manufacturing a Rb vapor cell and describe its fabrication process in a sequence of removing impurities, cold trapping, and sealing off. Saturated absorption spectroscopy was performed to verify the quality of our cell by comparing it to that of a commercial one. By using the lab-fabricated Rb vapor cell, we observed electromagnetically induced transparency in a ladder-type system corresponding to the 5S1/2-5P3/2-28D5/2 transition of the 85Rb atom. A highly excited Rydberg atomic system was prepared using two counter-propagating external cavity diode lasers with wavelengths of 780 nm and 480 nm. We also observed the Autler-Townes splitting signal while a radio-frequency source around 100 GHz incidents into the Rydberg atomic medium.

A Relativistiv Configuration Interaction Method Using Effective Core Potentials with Spin-Orbit Interactions

  • 김명청;이상연;이윤섭
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권6호
    • /
    • pp.547-552
    • /
    • 1995
  • As an extension to the Kramers' restricted Hartree-Fock (KRHF) method [J. Comp. Chem., 13, 595 (1992)], we have implemented the Kramers' restricted configuration interaction (KRCI) program in order to calculate excited states as well as the ground state of polyatomic molecules containing heavy atoms. This KRCI is based on determinants composed of the two-component molecular spinors which are generated from KRHF calculations. The Hamiltonian employed in the KRHF and KRCI methods contains most of all the important relativistic effects including spin-orbit terms through the use of relativistic effective core potentials (REP). The present program which is limited to a small configuration space has been tested for a few atoms and molecules. Excitation energies of the group 14 and 16 elements calculated using the present KRCI program are in good accordance with the spectroscopic data. Calculated excitation energies for many Rydberg states of K and Cs indicate that spin-orbit terms in the REP, which are derived for the ground state, are also reliable for the description of highly excited states. The electronic states of the polyatomic molecule CH3I are probed from the molecular region to the dissociation limit. Test calculations demonstrate that the present KRCI is a useful method for the description of potential energy surface of polyatomic molecules containing heavy atoms.

Vacuum Ultraviolet Photolysis of Ethyl Bromide at 104.8-106.7 nm

  • Kim, Hong-Lae;Yoo, Hee-Soo;Jung, Kyung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제2권2호
    • /
    • pp.71-75
    • /
    • 1981
  • Vacuum ultraviolet photolysis of ethyl bromide was studied at 104.8-106.7 nm (11.4-11.6 eV) in the pressure range of 0.2-18.6 torr at $25^{\circ}$ using an argon resonance lamp with and without additives, i.e., NO and He. Since the ionization potential of $CH_3CH_2Br$ is lower than the photon energy, the competitive processes between the photoionization and the photodecomposition were also investigated. The observations indicated that 50% of absorbed light leads to the former process and the rest to the latter one. In the absence of NO the principal reaction products for the latter process were found to be $CH_4, C_2H_2, C_2H_4, C_2H_6, and C_3H_8$. The product quantum yields of these reaction products showed two strikingly different phenomena with an increase in reactant pressure. The major products, $C_2H_4$ and $C_2H_6$, showed positive effects with pressure whereas the effects on minor products were negative in both cases, i.e., He and reactant pressures. Addition of NO completely suppresses the formation of all products except $C_2H_4$ and reduces the $C_2H_4$ quantum yield. These observations are interpreted in view of existence of two different electronically excited states. The initial formation of short-lived Rydberg transition state undergoes HBr molecular elimination and this state can across over by collisional induction to a second excited state which decomposes exclusively by carbon-bromine bond fission. The estimated lifetime of the initial excited state was ${\sim}4{\times}10^{-10}$ sec. The extinction coefficient for $CH_3CH_2Br$ at 104.8-106.7 nm and $25{\circ}$ was determined to be ${varepsilon} = (1/PL)ln(I_0/I_t) = 2061{\pm}160atm^{-1}cm6{-1}$ with 95% confidence level.