DOI QR코드

DOI QR Code

Highly Sulfonated Poly(Arylene Biphenylsulfone Ketone) Block Copolymers Prepared via Post-Sulfonation for Proton Conducting Electrolyte Membranes

  • Lee, Kyu Ha (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University) ;
  • Chu, Ji Young (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University) ;
  • Kim, Ae Rhan (Division of Chemical Engineering, Chonbuk National University) ;
  • Nahm, Kee Suk (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University) ;
  • Yoo, Dong Jin (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School, Hydrogen and Fuel Cell Research Center, Chonbuk National University)
  • Received : 2012.11.22
  • Accepted : 2013.03.19
  • Published : 2013.06.20

Abstract

A series of the block copolymers were successfully synthesized from post-sulfonated hydrophilic and hydrophobic macromers via three-step copolymerization. The degrees of sulfonation (DS) of the copolymers (10%, 30%, or 50%) were controlled by changing the molar ratio of the hydrophilic and hydrophobic parts. The resulting block copolymers were characterized by $^1H$ NMR and other technologies. The membranes were successfully cast using dimethyl sulfoxide (DMSO) solution at $100^{\circ}C$. The copolymers were characterized to confirm chemical structure by $^1H$ NMR and FT-IR. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) demonstrated that all sulfonated block copolymers exhibited good thermal stability with an initial weight loss at temperatures above $240^{\circ}C$. The membranes showed acceptable ion exchange capacity (IEC) and water uptake values in accordance with DS. The maximum proton conductivity was 184 mS $cm^{-1}$ in block copolymer-50 at $60^{\circ}C$ and 100% relative humidity, while the conductivity of Nifion-115 was 160 mS $cm^{-1}$ under the same measurement conditions. AFM images of the block copolymer membranes showed well separated the hydrophilic and hydrophobic domains. From the observed results it is that the prepared block membranes can be considered as suitable polymer electrolyte membranes for the application of polymer electrolyte membrane fuel cells (PEMFC).

Keywords

References

  1. Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Chem. Rev. 2004, 104, 4587-4611. https://doi.org/10.1021/cr020711a
  2. Nakano, T.; Nagaoka, S.; Kawakami, H. Polym. Adv. Technol. 2005, 16, 753-757. https://doi.org/10.1002/pat.650
  3. Bae, B.; Yoda, T.; Miyatake, K.; Uchida, H.; Watanabe, M. Angew. Chem. Int. Ed. 2010, 49, 317-320. https://doi.org/10.1002/anie.200905355
  4. Bae, B.; Hoshi, T.; Miyatake, K.; Watanabe, M. Macromolecules 2011, 44, 3884-3892. https://doi.org/10.1021/ma2000306
  5. Hyun, S. H.; Kim, A. R.; Nahm, K. S.; Yoo, D. J. Bull. Korean Chem. Soc. 2012, 33, 375-376. https://doi.org/10.5012/bkcs.2012.33.2.375
  6. Chu, J. Y.; Kim, A. R.; Nahm, K. S.; Lee, H.-K.; Yoo, D. J. Int. J. Hydrogen Energy 2013, 38, 6268-6274. https://doi.org/10.1016/j.ijhydene.2012.11.144
  7. Yoo D. J.; Hyun, S. H.; Kim, A. R.; Kumar, G. G.; Nahm, K. S. Bull. Korean Chem. Soc. 2011, 32, 4041-4048. https://doi.org/10.5012/bkcs.2011.32.11.4041
  8. Lee, K. H.; Chu, J. Y.; Kim, A. R.; Nahm, K. S.; Kim, C.-J.; Yoo, D. J. J. Membr. Sci. 2013, 434, 35-43. https://doi.org/10.1016/j.memsci.2013.01.037
  9. Wang, L.; Meng, Y. Z.; Wang, S. J.; Hay, A. S. J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 1779-1788. https://doi.org/10.1002/pola.20013
  10. Schauer, J.; Brozova, L. J. Membr. Sci. 2005, 250, 151-157. https://doi.org/10.1016/j.memsci.2004.09.047
  11. Zhao, Y.; Yin, J. J. Membr. Sci. 2010, 351, 28-35. https://doi.org/10.1016/j.memsci.2010.01.024
  12. Jeong, M.-H.; Lee, K.-S.; Hong, Y.-T.; Lee, J.-S. J. Membr. Sci. 2008, 314, 212-220. https://doi.org/10.1016/j.memsci.2008.01.050
  13. Jeong, M.-H.; Lee, K.-S.; Lee, J.-S. J. Membr. Sci. 2009, 337, 145-152. https://doi.org/10.1016/j.memsci.2009.03.035
  14. Yoo, D. J.; Hyun, S. H.; Kim, A. R.; Kumar, G. G.; Nahm, K. S. Polym. Int. 2011, 60, 85-92. https://doi.org/10.1002/pi.2914
  15. Gosalawit, R.; Chirachanchai, S.; Shishatskiy, S.; Nunes, S. P. J. Membr. Sci. 2008, 323, 337-346. https://doi.org/10.1016/j.memsci.2008.06.038
  16. Gomes, D.; Roeder, J.; Ponce, M. L.; Nunes, S. P. J. Membr. Sci. 2007, 295, 121-129. https://doi.org/10.1016/j.memsci.2007.02.046
  17. Zaidi, S. M. J.; Mikhailenko, S. D.; Robertson, G. P.; Guiver, M. D.; Kaliaguine, S. J. Membr. Sci. 2000, 173, 17-34. https://doi.org/10.1016/S0376-7388(00)00345-8
  18. Lin, H.-L.; Yu, T. L.; Han, F.-H. J. Polym. Research 2006, 13, 379-385.
  19. Bai, Z.; Rodrigues, S. J.; Dang, T. D. J. Membr. Sci. 2011, 383, 189-196. https://doi.org/10.1016/j.memsci.2011.08.044
  20. Lee, H.-S.; Badami, A. S.; Roy, A.; McGrath, J. E. J. Polym. Sci.: Part A: Polym. Chem. 2007, 45, 4879-4890. https://doi.org/10.1002/pola.22238

Cited by

  1. Sulfonated poly (arylene ether sulfone) proton exchange membranes for fuel cell applications vol.4, pp.4, 2015, https://doi.org/10.1515/gps-2015-0024
  2. Nanophase Separation Technologies: A Progress Review vol.17, pp.1, 2017, https://doi.org/10.1002/fuce.201600172
  3. Structure and Properties of Sulfonated Pentablock Terpolymer Films as a Function of Wet-Dry Cycles vol.51, pp.6, 2018, https://doi.org/10.1021/acs.macromol.8b00194