DOI QR코드

DOI QR Code

Characteristics of Percutaneous Absorption of Glycol ethers

Glycol ethers에 대한 피부 투과 특성

  • Lee, Han-Seob (Department of Environmental Sciences, Yong-In University) ;
  • Choi, Sung-Boo (Department of Environmental Sciences, Yong-In University) ;
  • Kim, Nac-Joo (Department of Fine Chemistry, Seoul National University OF Science and Technology) ;
  • Keun, Jang-Hyoun (SuJi High School) ;
  • Hwang, Hyun-Suk (Department of Environmental Sciences, Yong-In University) ;
  • Baek, Jung-Hun (Department of Environmental Sciences, Yong-In University) ;
  • Choi, Jin-Ho (Department of Environmental Sciences, Yong-In University) ;
  • Lee, Ho-Joon (Department of Environmental Sciences, Yong-In University)
  • Received : 2013.02.21
  • Accepted : 2013.03.22
  • Published : 2013.03.30

Abstract

Glycol ethers are a group of solvents based on alkyl ethers of ethylene glycol commonly used in paints. These solvents typically have a higher boiling point, together with the favorable solvent properties of lower-molecular weight ethers and alcohols. The word "Glycol ethers" was registered as a United States trademark by Union Carbide Corp. Typically, glycol ethers are found in pharmaceuticals, sunscreens, cosmetics, inks, dyes and water based paints. On the other hand, glycol ethers are used in degreasers, cleaners, aerosol paints and adhesives. Most glycol ethers are relatively water soluble, biodegradable and only a few are considered toxic. Therefore, they are unlikely to pose an adverse risk to the environment. Recent study suggests that occupational exposure to glycol ethers is related to low motile sperm count in men, but the finding has been disputed by others. In this study, skin permeation of 3 types glycol ethers were studied in vitro using matrix such as solvent and detergent. The absorption of glycol ethers[methyl glycol ethers(MC), ethyl glycol ethers(EC) and butyl glycol ethers(BC)] has been measured in vitro through rat skin. Epidermal membranes were set up in Franz diffusion cells and their permeability to PBS measured to establish the integrity of the skin before the glycol ethers were applied to the epidermal surface. Absorption rates for each glycol ethers were determined and permeability assessment made to quantify any irreversible alterations in barrier function due to contact with the esters. Types of glycol ethers in vitro experimental results on MC> EC> BC quickly appeared in the following order: skin permeation was beneficial to the skin permeation small molecular weight, the difference in chemical structure, such as hydrophilic, because with the partition coefficient and solubility mechanisms and passive diffusion to increase the speed at which transmission is considered.

Glycol ethers는 페인트에 흔히 사용되는 ethylene glycol의 alkyl ethers에 기반을 둔 용제들이다. 이 용제들은 일반적으로 저분자량 에테르와 알코올의 용제 친화적 성질과 더불어 더 높은 비등점을 가지고 있다. Union Carbide Corp.는 "Glycol ethers"를 하나의 미국 상표로 등록했으며, 이는 제약, 자외선차단제, 화장품, 잉크, 염료 및 수성페인트에서 찾아볼 수 있다. 반면 glycol ethers는 그리스 제거제, 세제, 에어로졸 페인트와 접착제에서도 발견된다. 대부분의 glycol ethers는 수용성, 생분해성이며, 아주 적은 수의 glycol ethers만이 유독성이라고 여겨진다. 그러므로 glycol ethers는 환경에 부작용을 낳을 것 같지는 않다. 최근 연구는 glycol ethers에 작업상 노출되는 것이 남성 정자의 저 운동성과 연관이 되어 있다고 제시했지만, 이는 다른 이들에 의해 반박되어지고 있다. 본 연구에서는 3가지 종류의 glycol ethers의 피부침투성에 관해 용제와 세제의 조합을 사용하여 시험관을 통해 연구한다. Methyl glycol ethers, ethyl glycol ethers and butyl glycol ethers의 흡수는 쥐의 피부를 통해 시험관에서 측정되었다. Epidermal membranes는 Franz diffusion cells에 세워졌으며, 그들의 PBS 침투율은 glycol ethers가 epidermal surface에 적용되기 전, 피부의 보전을 위해 처리하였다. 개별 glycol ethers의 흡수율은 최대 흡수 파장(${\lambda}_{max}$)에서 흡광도를 측정하여 결정하였으며, 침투율의 측정은 esters와의 접촉을 이유로 장벽 기능 내 불가역 변화를 정량화하였다. 시험관 실험 결과 glycol ethers의 종류는 methyl glycol ethers > ethyl glycol ethers > butyl glycol ethers의 순에 따라 빠르게 나타났다. 피부침투는 저분자량 피부침투, 친수성과 같은 화학적구조의 차이에서 유익했다. 이는 분배계수와 용해 방법 및 수동확산이 전달이 고려되는 곳에서 속도를 올렸기 때문이다.

Keywords

References

  1. E.M Kosower, "An introduction to Physical Organic Chemistry", Wiley: New York; 293. (1969).
  2. D Ratna and J Karger-Kocsis, "Recent advances in shape memory polymers and composites a review", J Mater Sci; 43:254-269(2008) https://doi.org/10.1007/s10853-007-2176-7
  3. RL Mickelsen, RC Hall, RTChern and JR Myers, "Evaluation of a simple weight-loss method for determining the permeation of organic liquids through rubber films". Am Ind Hyg Assoc J; 52(10): 445-447. (2005).
  4. Nicola Cherry, Harry Moore, Roseanne McNamee, Allan Pacey, Gary Burgess, Julie-Ann Clyma, Martin Dippnall, Helen Baillie and Andrew Povey. "Occupation and male infertility: glycol ethers and other exposures". Occup. Environ. Med.; 65(10): 708-714. (2008). https://doi.org/10.1136/oem.2007.035824
  5. R. Baselt, "Disposition of Toxic Drugs and Chemicals in Man", 8th edition, Biomedical Publications, Foster City, CA; 208-210. (2008).
  6. 2009 TLVs and BEIs, American Conference of Industrial Hygienists, Cincinnati, Ohio;(2009)
  7. JE Riviere and JD Brooks. "Predicting skin permeability from complex chemical mixtures", Toxicol. Appl. Pharmacol. 208:99-110(2005). https://doi.org/10.1016/j.taap.2005.02.016
  8. F Dreher, F Fouchard and C Patouillet, "Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or $\alpha$-tocopherol applied on human skin models or human skin ex vivo at finite doses". Skin Pharmacol. Appl. Skin Physiol.; 15:40-58. (2002). https://doi.org/10.1159/000066680
  9. KR Brain, KA Walters and DM Green, "Percutaneous penetration of diethanolamine through human skin in vitro: application from cosmetic vehicles". Food Chem. Toxicol.; 43:681-690. (2005). https://doi.org/10.1016/j.fct.2004.12.021
  10. Blount, BC, Silva, MJ, Caudill, SP, Needham, LL, Pirkle, JL, Sampson, EJ, Lucier, GW, Jackson, RJ & Brock and JW, "Levels of seven urinary phthalate metabolites in a human reference population. Environmental Health Perspectives"; 108:979-982. (2000).
  11. S Pappinen, S Tikkinen and Pasonen- Seppanen, "Rat epidermal keratinocyte organotypic culture (ROC) compared to human cadaver skin: The effect of skin permeation enhancers", Eur. J. Pharm. Sci.; 30:240-250. (2007). https://doi.org/10.1016/j.ejps.2006.11.013
  12. U Bock and A Gamer, "Reconstructed human epidermis for skin absorption testing: Results of the German prevalidation study", Altern. Lab. Anim.; 34:283-294. (2006).
  13. YG Anissimov and MS Roberts, "Diffusion modeling of percutaneous absorption kinetics. 2. Finite vehicle volume and solvent deposited solids", J Pharm Sci; 90(4):504-520. (2001). https://doi.org/10.1002/1520-6017(200104)90:4<504::AID-JPS1008>3.0.CO;2-H
  14. SK Poole and CF Poole, "Separation methods for estimating octanol-water partition coefficients", J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.; 797:3-19. (2003). https://doi.org/10.1016/j.jchromb.2003.08.032
  15. HM Clowes, RC Scott and JR Heylings, "Skin absorption: flow-through or static diffusion cells", Toxicol. in Vitro ; 8:827-830. (1994). https://doi.org/10.1016/0887-2333(94)90078-7
  16. OECD (Organisation for Economic Co-operation and Development), "OECD Guidelines for the Testing of Chemicals- 428 Skin Absorption: In Vitro Method", OECD, Paris; (2004).
  17. Roberts, MS., Anissimov, YG. Gonsalvez, RA, "Mathematical models in percutaneous absorption (Reprinted from Percutaneous Adsorption", J. Toxicol-Cutan. Ocul. ; 20:221-270. (2002).
  18. RL Mickelsen, RC Hall, RT Chern and JR Myers. "Evaluation of a simple weight-loss method for determining the permeation of organic liquids through rubber films", Am Ind Hyg Assoc J; 52(10): 445-447. (1991). https://doi.org/10.1080/15298669191365018
  19. California Code of Regulations, Title 8, Section 339. : "The Hazardous Substances List", State of California Department of Labor Relations, Archived from the original on 5 May 2008; Retrieved 2008-04-21.
  20. G Lian, L Chen and L Han, "An evaluation of mathematical models for predicting skin permeability", J. Pharm. Sci.; 97:584-598. (2008). https://doi.org/10.1002/jps.21074
  21. J Crank, "The Mathematics of Diffusion", Clarendon Press, Oxford Univ., London; 42-61. (1995).
  22. JC Sah, "Analysis of Permeation Data : Evaluation of the Lag Time Method", Int. J. Pharm.,; 90:161-169. (1993). https://doi.org/10.1016/0378-5173(93)90152-6
  23. AO Gamer and E Leibold, "The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin", Toxicol. In Vitro. ; 20:301-307. (2006). https://doi.org/10.1016/j.tiv.2005.08.008
  24. A Mavon, C Miquel and O Lejeune, "In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen", Skin Pharmacol. Physiol.; 20:10-20. (2007). https://doi.org/10.1159/000096167
  25. W Luo, S Medrek, J Misra and GJ Nohynek, "Predicting human skin absorption of chemicals: Development of a novel quantitative structure activity relationship". Toxicol. Ind. Health.; 23:39-45. (2007). https://doi.org/10.1177/0748233707077430
  26. D Southwell and BW Barry, "Penetration enhancers for human skin: mode of action of 2-Pyrrolidone and dimethylformamide on partition and diffusion of model compound water, n-alcohol and caffeine". J Invest Dermatol ; 82:507-515. (1984).
  27. SK Hwang, SY Oh, "Percutaneous absorption Characteristics of antihyperlipidemia Gel ointment using Fibric acid", J. Kor. Oil Chem. Soc,; 27(4):407-414. (2010).
  28. N Kanikkannan, K, Kandimalla and SS Lamba, "Singh M. Structures activity relationship of chemical penetration enhancers in transdermal drug delivery", Current Medicinal Chemistry ; 6:593-608. (1999).
  29. AF EL-Kuttan, CS Asbill and BB Michniak, "The effect of terpenes enhancer lipophilicity on the percutaneous permeation of hydrocortisone formulated in HPMC gel system". Int J Pharm; 198:179-189. (2000). https://doi.org/10.1016/S0378-5173(00)00330-6
  30. H Morimoto, Y Woda, T Seki and K Sugibayashi. "In vitro skin permeation of morphin hydrochloride during the finite application of penetrationenhancing system containing water, ethanol and L-menthol". Biol Pharm Bull; 25:134-136. (2002). https://doi.org/10.1248/bpb.25.134