DOI QR코드

DOI QR Code

화장품에서의 올레오겔 이용

The Utilization of Oleogels for Cosmetics

  • 조완구 (전주대학교 대체의학대학 기초의과학과)
  • Cho, Wan-Goo (College of Alternative Medicine, Jeonju University)
  • 투고 : 2013.01.24
  • 심사 : 2013.03.22
  • 발행 : 2013.03.30

초록

올레오겔은 친유성의 액체와 고체의 혼합물로 정의할 수 있다. 고상의 지질 물질(올레오겔 형성제)은 10 wt.% 미만의 농도로 네크워크 형성에 의해 오일을 함유할 수 있다. 올레오겔 형성제는 자발적 회합계와 결정화 입자계의 두 가지 그룹으로 나눌 수 있다. 본 연구에서는 다양한 올레오겔 형성제를 이용한 올레오겔 형성에 관한 최근 연구 결과를 살펴보고자 한다. 지질 네트워크 형성의 기본적인 양상을 올레오겔을 기본으로 한 결정화 입자와 관련하여 논의하고자 한다. 또한 올레오겔의 화장품에의 응용 사례에 대해 기술하고자 한다.

Oleogels may be defined as lipophilic liquid and solid mixtures. The solid lipid materials (oleogelators) with less than 10 wt.% can entrap bulk liquid oil by ways of the formation of network of oleogelators in the bulk oil. The oelogelators can be grouped into two: self-assembly system and crystal particles system. This article reviewed recent work on the formation of oleogels using various types of oleogelators. The fundamental aspects of the formation of lipid network are discussed with a special emphasis on crystal particle based oleogels. The potential applications of oleogels for cosmetics are also described.

키워드

참고문헌

  1. L. S. K. Dassanayake, D. R. Kodali, and S. Ueno, Formation of oleogels based on edible lipid materials, Curr. Opin. Colloid Interface Sci., 16, 432 (2011). https://doi.org/10.1016/j.cocis.2011.05.005
  2. M. Pernetti, K. F. van Malssen, E. Floter, and A. Bot, Structuring of edible oils by alternatives to crystalline fat, Curr. Opin. Colloid Interface Sci. 12, 221 (2007). https://doi.org/10.1016/j.cocis.2007.07.002
  3. S. Murdan, G. Gregoriadis, and A. T. Florence, Inverse toroidal vesicles: precursors of tubules in sorbitan monostearte organogels, Int. J. Pharm., 183, 47 (1999). https://doi.org/10.1016/S0378-5173(99)00042-3
  4. S. Murdan, G. Gregoriadis, and A. T. Florence, Novel sorbitan monostearate organogels, J. Pharm. Sci., 88, 608 (1999). https://doi.org/10.1021/js980342r
  5. N. Jibry, T. Sarwar, and S. Murdan, Amphiphilogels as drug carriers: effects of drug incorporation on the gel and on active drug, J. Pharm. Pharmacol., 58, 187 (2006). https://doi.org/10.1211/jpp.58.2.0005
  6. M. A. Rogers, A. J. Wright, and A. G. Marangoni, Oil organogels: the fat of the future, Soft Matter, 5, 1594 (2010).
  7. K. Larsson, P. Quinn, K. Sato, and F. Tiberg, Lipids: structure, physical properties and functionality, 267, The Oily Press, Bridgwater, England (2006).
  8. A. Sein, J. A. Verheij, and W. G. M. Agterof, Rheological characterization, crystallization, and gelation behavior of monoglyceride gels, J. Colloid Interface Sci., 249, 412 (2002). https://doi.org/10.1006/jcis.2002.8287
  9. I. Heertje, E. C. Roijers, and H. A. C. M. Hendrickx, Liquid crystalline phases in the structuring of food products, Lebensm Wiss Technol., 31, 387 (1998). https://doi.org/10.1006/fstl.1998.0369
  10. N. K. O. Ojijo, E. Kesselman, V. Shuster, S. Eichler, S. Eger, I. Neeman, and E. Shimoni, Changes in microstructural, thermal, and rheological properties of olive oil/monoglyceride networks during storage, Food Res. Int., 37, 385 (2004). https://doi.org/10.1016/j.foodres.2004.02.003
  11. A. Yagmur, L. de Campo, L. Sagalowicz, M. E. Leser, and O. Glatter, Emulsified microemulsions and oil-containing liquid crystalline phases, Langmuir, 21, 569 (2005). https://doi.org/10.1021/la0482711
  12. A. Yagmur, L. de Campo, S. Salentinig, L. Sagalowicz, M. E. Leser, and O. Glatter, Oil-loaded monolinolein-based particles with confined inverse discontinuous cubic structure (Fd3m), Langmuir, 22, 517 (2006). https://doi.org/10.1021/la052109w
  13. H. D. Batte, A. J. Wright, J. W. Rush, S. H. J. Idziak, and A. G. Marangoni, Phase behavior, stability, and mesomorphism of monostearin-oil-water gels, Food Biophys., 2, 29 (2007). https://doi.org/10.1007/s11483-007-9026-7
  14. A Bot, Y. S. J. Veldhuizen, R. den Adel, and E. C. Roijers, Non-TAG structuring of edible oils and emulsions, Food Hydrocoll., 23, 1184 (2009). https://doi.org/10.1016/j.foodhyd.2008.06.009
  15. A. Bot, R. Adel, and E. C. Roijers, Fibrils of g-Oryzanol+b-Sitosterol in Edible Oil Organogels, J. Am. Oil Chem. Soc., 85, 1127 (2008). https://doi.org/10.1007/s11746-008-1298-7
  16. M. Pernetti, K. van Malssen, D. Kalnin, and E. Floter, Structuring edible oil with lecithin and sorbitan tri-stearate, Food Hydrocoll., 21, 855 (2007). https://doi.org/10.1016/j.foodhyd.2006.10.023
  17. M. Minase, M. Kondo, M. Onikata, and K. Kawamura, The viscosity of organic liquid suspensions of trimethyldococylammonium-montmorillonite complexs clays and clay minerals, Clays Clay Miner., 56, 49 (2008). https://doi.org/10.1346/CCMN.2008.0560105
  18. X. Li, R. M. Washenberger, L. E. Scriven, and H. T. Davis, Phase behavior and microstructure of water/trisiloxane E6 and E10 polyoxyethylene surfactant/silicone oil systems, Langmuir, 15, 2278 (1999). https://doi.org/10.1021/la9804076
  19. T. Tamura, T. Suetake, T. Ohkubo, and K. Ohbu, Effect of alkali-metal ions on gel formation in the 12-hydroxystearic acid soybean oil system, J. Am. Oil Chem. Soc., 71, 857 (1994). https://doi.org/10.1007/BF02540462
  20. C. A. Elliger, D. G. Guadagni, and C. E. Dunlap, Thickening action of hydroxystearates in peanut butter, J. Am. Oil Chem. Soc., 49, 536 (1972). https://doi.org/10.1007/BF02628900
  21. F. G. Gandolfo, A. Bot, and E. Floter, Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures, J. Am. Oil Chem. Soc., 81, 1 (2004). https://doi.org/10.1007/s11746-004-0851-5
  22. A. J. Wright and A. G. Marangoni, Formation, structure, and rheological properties of ricinelaidic acid-vegetable oil organogels, J. Am. Oil Chem. Soc., 83, 497 (2006). https://doi.org/10.1007/s11746-006-1232-9
  23. A. C. Dweck and A. M. Burnham, Moulding techniques in lipstick manufacture: a comparative evaluation, Int. J. Cosmet. Sci., 2, 143 (1980). https://doi.org/10.1111/j.1467-2494.1980.tb00242.x
  24. J. Fukasawa and H. Tsutsumi, Liquid crystals of long-chain dialkyl phosphate salts in nonpolar solvents, J. Colloid Interface Sci., 69, 143 (1991).
  25. E. Carretti, M. George, and R. G. Weiss, Insights into the mechanical properties of a silicone oil gel with a latent gelator, 1-octadecylamine, and $CO^{2}$ as an activator, Beilstein J. Org. Chem., 6, 984 (2010). https://doi.org/10.3762/bjoc.6.111
  26. J. Daniel and R. Rajasekaran, Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids, J. Am. Oil Chem. Soc., 80, 417 (2003). https://doi.org/10.1007/s11746-003-0714-0
  27. L. A. Spaulding, Clear gel formulation for use in transparent candles, USP 5,843;194 (1998).
  28. J. F. Toro-Vazquez, J. A. Morales-Rueda, E. Dibildox-Alvarado, M. Charo-Alonso, M. Gonzalez-Chavez, and M. M. Alonzo-Macias, Thermal and textural properties of organogels developed by candelilla wax in safflower oil, J. Am. Oil Chem. Soc., 84(11), 989 (2007). https://doi.org/10.1007/s11746-007-1139-0
  29. M. A. Rogers, A. K. Smith, A. J. Wright, and A. G. Maranagoni, A novel Cryo-SEM technique for imaging vegetable oil based organogels, J. Am. Oil Chem. Soc., 84, 899 (2007). https://doi.org/10.1007/s11746-007-1122-9
  30. V. A. Mallia, M. George, D. L. Blair, and R. G. Weiss, Robust organogels from nitrogen containing derivatives of (R)-12-hydroxystearic acid as gelators: comparisons with gels from stearic acid derivatives, Langmuir, 25(15), 8615 (2009). https://doi.org/10.1021/la8042439
  31. K. Higaki, Y. Sasakura, T. Koyano, I. Hachiya, and K. Sato, Physical analysis of gel-like behavior of binary mixtures of high- and low-melting fats, J. Am. Oil Chem. Soc., 80, 263 (2003). https://doi.org/10.1007/s11746-003-0687-z
  32. K. Higaki, T. Koyano, I. Hachiya, and K. Sato, In situ optical observation of microstructure of $\beta$-fat gel made of binary mixtures of high-melting and low-melting fats, Food Res. Int., 37, 2 (2004). https://doi.org/10.1016/j.foodres.2003.09.006
  33. K. Higaki, T. Koyano, I. Hachiya, K. Sato, and K. Suzuki, Rheological properties of $\beta$-fat gel made of binary mixtures of high-melting and low-melting fats, Food Res. Int., 37, 799 (2004). https://doi.org/10.1016/j.foodres.2004.03.012
  34. H. M. Schaink, K. F. van Malssen, S. Morgado-Alves, D. Kalnin, and E. van der Linden, Crystal network for edible oil organogels: Possibilities and limitations of the fatty acid and fatty alcohol systems, Food Res. Int., 40, 1185 (2007). https://doi.org/10.1016/j.foodres.2007.06.013
  35. J. R. Villalobos-Hernandez and C. C. Muller-Goymann, Novel nanoparticulate carrier system based on carnauba wax and decyl oleate for the dispersion of inorganic sunscreens in aqueous media, Eur. J. Pharm. Biopharm., 60, 113 (2005). https://doi.org/10.1016/j.ejpb.2004.11.002
  36. L. S. K. Dassanayake, D. R. Kodali, S. Ueno, and K. Sato, Physical properties of rice bran wax in bulk and organogels, J. Am. Oil Chem. Soc., 86, 1163 (2009). https://doi.org/10.1007/s11746-009-1464-6
  37. D. E. Tambe and M. M. Sharma, Factors controlling the stability of colloid-stabilized emulsions II: A model for the rheological properties of colloid-laden interfaces, J. Colloid Interface Sci., 162, 1 (1994). https://doi.org/10.1006/jcis.1994.1001
  38. A. G. Marangoni, Crystallography, ed. A. G. Marangoni, 9, Marcel Dekker, New York (2004).
  39. D. Rousseau, R. S. Khan, L. Zilnik, and S. M. Hodge, Dispersed phase destabilization in tablespreads, J. Am. Chem. Soc., 75, 1111 (2003).
  40. S. Ghosh, T. Tran, and D. Rousseau, Comparison of Pickering and network stabilization in water-in-oil emulsions, Langmuir, 27, 6589 (2011). https://doi.org/10.1021/la200065y
  41. D. Johansson and B. Bergenstahl, The influence of food emulsifiers on fat and sugar dispersions in oils, J. Am. Oil Chem. Soc., 69, 705 (1992). https://doi.org/10.1007/BF02635905
  42. D. Johansson, B. Bergenstahl, and E. Lundgren, Wetting of fat crystals by triglyceride oil and water, J. Am. Oil Chem. Soc., 72, 921 (1995). https://doi.org/10.1007/BF02542070
  43. S. Ghosh and D. Rousseau, Freeze-thaw stability of water-in-oil emulsions, J. Colloid Interface Sci., 339, 91 (2009). https://doi.org/10.1016/j.jcis.2009.07.047
  44. H. Tanaka, H. Hayashi and T. Nishi, Digital image analysis of droplet patterns in polymer systems: Point pattern, J. Appl. Phys., 65, 4480 (1989). https://doi.org/10.1063/1.343266
  45. J. F. Toro-Vazquez, J. Morales-Rueda, V. A. Mallia, and R. G. Weiss, Relationship between molecular structure and thermo-mechanical properties of candellila wax and amides derived from (R)-12-hydrostearic acid as gelators of safflower oil, Food Biophys., 5, 193 (2010). https://doi.org/10.1007/s11483-010-9159-y
  46. S. Masashi, I. Takeo, I. Yasushi, M. Genichi, N. Koichi, and H. Hitoshi, Control of the hardness of the oil-wax gel by mixing of normal paraffin wax and the branched paraffin wax, J. Jpn. Soc. Color Mat., 76 380 (2003).
  47. V. A. Mallia, M. George, D. L. Blair, and R. G. Weiss, Robust organogels from nitrogen containing derivatives of (R)-12-hydroxystearic acid as gelators: comparisons with gels from stearic acid derivatives, Langmuir, 86, 15 (2009).
  48. T. Imai, K. Nakamura, and M. Shibata, Relationship between the hardness of an oil--wax gel and the surface structure of the wax crystals, Colloids Surf. A, Physicochem. Eng. Asp., 194, 233 (2001). https://doi.org/10.1016/S0927-7757(01)00799-3
  49. A. C. Dweck, The sweating of lipsticks, Cosmetics & Toiletries, 96, 29 (1981).
  50. S. Y. Seo, I. S. Lee, H. Y. Shin, K. Y. Choi, S. H. Kang, and H. J. Ahn, Observation of the sweating in lipstick by scanning electron microscopy, Int. J. Cos. Sci., 21(3), 207 (1991).
  51. E. Magda, V. M. Lee, W. D. William, and L. N. Campbell, Non-sweating lipsticks, EP 950,392 B1 (2004).
  52. E. Magda, V. M. Lee, W. D. William, L. N. Campbell, and P. C. Lynn, Non-sweating lipsticks, EP 725,620 B1 (2001).
  53. H. S. Bul, M. Kanji, and A. C. Tong, Enhanced shine and moisture lip composition, EP 2,269,570 A2 (2010).
  54. M. Pernetti, K. F. van Malssen, E. Floter, and A. Bot, Structuring of edible oils by alternatives to crystalline fat, Curr Opin Colloid Interface Sci., 12, 221 (2007). https://doi.org/10.1016/j.cocis.2007.07.002

피인용 문헌

  1. 제주산 말지방(Horse Fat)의 저장 안정성 향상에 관한 연구 vol.46, pp.1, 2020, https://doi.org/10.15230/scsk.2020.46.1.31