DOI QR코드

DOI QR Code

Binder-free Sn/Graphene Nanocomposites Prepared by Electrophoretic Deposition for Anode Materials in Lithium Ion Batteries

  • Bae, Eun Gyoung (Department of Printed Electronics Engineering in WCU Program, Sunchon National University) ;
  • Hwang, Yun-Hwa (Department of Printed Electronics Engineering in WCU Program, Sunchon National University) ;
  • Pyo, Myoungho (Department of Printed Electronics Engineering in WCU Program, Sunchon National University)
  • Received : 2012.12.12
  • Accepted : 2013.01.28
  • Published : 2013.04.20

Abstract

Nanocomposites consisting of Sn nanoparticles and graphene oxide (GO) were electrophoretically deposited onto Cu current collectors that was used for anodes in Li ion batteries (LIBs). In order to optimize the electrochemical performance of nanocomposites as an anode material by controlling the oxygen functionality, the GO was subjected to $O_3$ treatment prior to electrophoretic deposition (EPD). During thermal reduction of the GO in the nanocomposites, the Sn nanoparticles were reduced in size, along with the formation of SnO and/or $SnO_2$ at a small fraction, relying on the oxygen functionalities of the GO. The variation in the duration of time for the $O_3$ irradiation resulted in a small change in total oxygen content, but in a significantly different fraction of each functional group in the GO, which influenced the Sn nanoparticle size and the amount of SnO (and/or $SnO_2$). As a result, the EPD films prepared with the GO that possessed the least amount of carboxylic groups (made by treating GO in an $O_3$ environment for 3 h) showed the best performance, when compared with the nanocomposites composed of untreated GO or GO that was $O_3$-treated for a duration of less than 3 h.

Keywords

References

  1. Winter, M.; Besenhard, J. O. Electrochim. Acta 1999, 45, 31. https://doi.org/10.1016/S0013-4686(99)00191-7
  2. Prabakar, S. J. R.; Han, S. C.; Singh, S. P.; Lee, D. K.; Sohn, K.-S.; Pyo, M. J. Power Sources 2012, 209, 57. https://doi.org/10.1016/j.jpowsour.2012.02.053
  3. Han, S. C.; Singh, S. P.; Hwang, Y.-H.; Bae, E. G.; Park, B. K.; Sohn, K.-S.; Pyo, M. J. Electrochem. Soc. 2012, 159, A1867. https://doi.org/10.1149/2.009212jes
  4. Prabakar, S. J. R.; Hwang, Y.-H.; Bae, E. G.; Lee, D. K.; Pyo, M. Carbon 2013, 52, 128. https://doi.org/10.1016/j.carbon.2012.09.013
  5. Lee, D. K.; Han, S. C.; Ahn, D.; Singh, S. P.; Sohn, K.-S.; Pyo, M. ACS Appl. Mater. Interf. 2013, 4, 6842.
  6. Kim, H. S.; Kim, S.-O.; Kim, Y.-T.; Jung, J. K.; Na, B. K.; Lee, J. K. Bull. Korean Chem. Soc. 2012, 33, 65. https://doi.org/10.5012/bkcs.2012.33.1.65
  7. Lim, H.-H.; Cho, A.-R. Sivakumar, N.; Kim, W.-S.; Yoon, W.-S.; Lee, Y.-S. Bull. Korean Chem. Soc. 2011, 32, 1491. https://doi.org/10.5012/bkcs.2011.32.5.1491
  8. Zhang, W.-J. J. Power Sources 2011, 196, 13. https://doi.org/10.1016/j.jpowsour.2010.07.020
  9. Wang, G. X.; Ahn, J.; Lindsay, M. J.; Sun, L.; Bradhurst, D. H.; Dou, S. X.; Liu, H. K. J. Power Sources 2001, 97-98, 211. https://doi.org/10.1016/S0378-7753(01)00619-X
  10. Derrien, G.; Hassoun, J.; Panero, S.; Scrosati, B. Adv. Mater. 2007, 19, 2336. https://doi.org/10.1002/adma.200700748
  11. Liang, S.; Zhu, X.; Lian, P.; Yang, W.; Wang, H. J. Solid State Chem. 2011, 184, 1400. https://doi.org/10.1016/j.jssc.2011.03.052
  12. Wen, Z.; Cui, S.; Kim, H.; Mao, S.; Yu, K.; Lu, K.; Lu, G.; Pu, H.; Mao, O.; Chen, J. J. Mater. Chem. 2012, 22, 3300. https://doi.org/10.1039/c2jm14999k
  13. Wang, G.; Wang, B.; Wang, X.; Park, J.; Dou, S.; Ahn, H.; Kim, K. J. Mater. Chem. 2009, 19, 8378. https://doi.org/10.1039/b914650d
  14. Van der Biest, O. O.; Vandeperre, L. J. Ann. Rev. Mater. Sci. 1999, 29, 327. https://doi.org/10.1146/annurev.matsci.29.1.327
  15. Choi, H.; Kim, H.; Hwang, S.; Han, Y.; Jeon, M. J. Mater. Chem. 2011, 21, 7548. https://doi.org/10.1039/c1jm11145k
  16. Yin, X.; Xue, Z.; Liu, B. J. Power Sources 2011, 196, 2422. https://doi.org/10.1016/j.jpowsour.2010.09.047
  17. Wu, Z.-S.; Pei, S.; Ren, W.; Tang, D.; Gao, L.; Liu, B.; Li, F.; Liu, C.; Cheng, H.-M. Adv. Mater. 2009, 21, 1756. https://doi.org/10.1002/adma.200802560
  18. Zhang, Y. A.; Lin, J. Y.; Wu, C. X.; Li, F. S.; Guo, T. L. Solid-State Electron. 2012, 67, 6. https://doi.org/10.1016/j.sse.2011.08.005
  19. Choi, W. B.; Jin, Y. W.; Kim, H. Y.; Lee, S. J.; Yun, M. J.; Kang, J. H.; Choi, Y. S.; Park, N. S.; Lee, N. S.; Kim, J. M. Appl. Phys. Lett. 2001, 78, 1547. https://doi.org/10.1063/1.1349870
  20. Zhao, H.; Song, H.; Li, Z.; Yuan, G.; Jin, Y. Appl. Surf. Sci. 2005, 251, 242. https://doi.org/10.1016/j.apsusc.2005.03.202
  21. Shane, M. J.; Talbot, J. B.; Kinney, B. G.; Sluzky, E.; Hesse, K. R. J. Colloid Interf. Sci. 1994, 165, 334. https://doi.org/10.1006/jcis.1994.1237
  22. Russ, B. E.; Talbot, J. B. J. Electrochem. Soc. 1998, 145, 1253. https://doi.org/10.1149/1.1838447
  23. Khoo, E.; Lee, P. S.; Ma, J. J. Eur. Ceram. Soc. 2010, 30, 1139. https://doi.org/10.1016/j.jeurceramsoc.2009.05.014
  24. Kanamura, K.; Goto, A.; Rho, Y. H.; Umegaki, T. J. Power Sources 2001, 97-98, 294. https://doi.org/10.1016/S0378-7753(01)00678-4
  25. Caballero, A.; Hernan, L.; Melero, M.; Morales, J.; Moreno, R.; Ferrari, B. J. Power Sources 2006, 158, 583. https://doi.org/10.1016/j.jpowsour.2005.09.018
  26. Ui, K.; Funo, S.; Nagase, H.; Idemoto, Y.; Koura, N. Electrochemistry 2006, 74, 474. https://doi.org/10.5796/electrochemistry.74.474
  27. Koura, N.; Funo, S.; Tsuiki, H.; Idemoto, Y.; Ui, K.; Matsumoto, T. J. Surf. Finish. Soc. Jpn. 2002, 53, 683. https://doi.org/10.4139/sfj.53.683
  28. Ui, K.; Minami, T.; Ishikawa, K.; Idemoto, Y.; Koura, N. J. Power Sources 2005, 146, 698. https://doi.org/10.1016/j.jpowsour.2005.03.160
  29. Ui, K.; Kawamura, S.; Kumagai, N. Electrochim. Acta 2012, 76, 383. https://doi.org/10.1016/j.electacta.2012.05.048
  30. Yang, J.; Yan, X.; Chen, J.; Ma, H.; Sun, D.; Xue, Q. RSC Adv. 2012, 2, 9665. https://doi.org/10.1039/c2ra20948a
  31. Mi, X.; Huang, G.; Xie, W.; Wang, W.; Liu, Y.; Gao, J. Carbon 2012, 50, 4856. https://doi.org/10.1016/j.carbon.2012.06.013
  32. Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; Abouzeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. J. Mater. Chem. 2009, 19, 3832. https://doi.org/10.1039/b906253j
  33. Li, X.; Wang, H.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Am. Chem. Soc. 2009, 131, 15939. https://doi.org/10.1021/ja907098f
  34. Teng, C.-C.; Ma, C.-C. M.; Lu, C.-H.; Yang, S.-Y.; Lee, S.-H.; Hsiao, M.-C.; Yen, M.-Y.; Chiou, K.-C.; Lee, T.-M. Carbon 2011, 49, 5107. https://doi.org/10.1016/j.carbon.2011.06.095
  35. Wang, Y.; Shi, Z.; Yu, J.; Chen, L.; Zhu, J.; Hu, Z. Carbon 2012, 50, 5525. https://doi.org/10.1016/j.carbon.2012.07.042
  36. Wang, S.; Jiang, S. P.; Wang, X. Electrochim. Acta 2011, 56, 3338. https://doi.org/10.1016/j.electacta.2011.01.016
  37. Ye, J.; Zhang, H.; Chen, Y.; Cheng, Z.; Hu, L.; Ran, Q. J. Power Sources 2012, 212, 105. https://doi.org/10.1016/j.jpowsour.2012.03.101
  38. Wolfenstine, J. J. Power Sources 1999, 79, 111. https://doi.org/10.1016/S0378-7753(99)00052-X
  39. Xu, Y.; Zhu, Y.; Liu, Y.; Wang, C. Adv. Energ. Mater. 2013, 3, 128. https://doi.org/10.1002/aenm.201200346

Cited by

  1. A one-pot biosynthesis of reduced graphene oxide (RGO)/bacterial cellulose (BC) nanocomposites vol.16, pp.6, 2014, https://doi.org/10.1039/C4GC00264D
  2. Graphene-based nanocomposite anodes for lithium-ion batteries vol.6, pp.20, 2014, https://doi.org/10.1039/C4NR02999B