References
- Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Pérez, J. Z.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Suleiman, M. A.; Shaer, A. E.; Mofor, A. C.; Postels, B.; Waag, A.; Boukos, N.; Trvalos, A.; Kwack, H. S.; Guinard, J.; Dang, D. L. S. Nanotechnology 2009, 20, 332001. https://doi.org/10.1088/0957-4484/20/33/332001
- Guo, H.; Zhou, J.; Lin, Z. Electrochem. Commun. 2008, 10, 146. https://doi.org/10.1016/j.elecom.2007.11.010
- Chu, S.; Olmedo, M.; Yang, Z.; Kong, J.; Liu, J. Appl. Phys. Lett. 2008, 93, 1811106.
- Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Appl. Phys. Lett. 2003, 83, 144. https://doi.org/10.1063/1.1589166
- Fan, Z.; Lu, J. G. Appl. Phys. Lett. 2005, 86, 123510. https://doi.org/10.1063/1.1883715
- Kim, D.; Yun, I.; Kim, H. Curr. Appl. Phys. 2010, 10, S459. https://doi.org/10.1016/j.cap.2010.02.030
- Tubtimtae, A.; Lee, M.-W. Superlattices. Microstruct. 2012, 52, 987. https://doi.org/10.1016/j.spmi.2012.08.002
- Yang, H.; Lee, J.-S.; Bae, S.; Hwang, J. H. Curr. Appl. Phys. 2009, 9, 797. https://doi.org/10.1016/j.cap.2008.07.016
- Fang, T.-H.; Kang, S.-H. J. Phys. D: Appl. Phys. 2008, 41, 245303. https://doi.org/10.1088/0022-3727/41/24/245303
- Kim, S.; Kim, M. S.; Nam, G.; Lee, J.-Y. Electron. Mater. Lett. 2012, 8, 445. https://doi.org/10.1007/s13391-012-2071-5
- He, H. P.; Tang, H. P.; Ye, Z. Z.; Zhu, L. P.; Zhao, B. H.; Wang, L.; Li, X. H. Appl. Phys. Lett. 2007, 90, 023104. https://doi.org/10.1063/1.2429906
- Zhu, L.; Li, J.; Ye, Z.; He, H.; Chen, X.; Zhao, B. Opt. Mater. 2008, 31, 237. https://doi.org/10.1016/j.optmat.2008.03.015
- Nayak, P. K.; Yang, J.; Kim, J.; Chung, S.; Jeong, J.; Lee, C.; Hong, Y. J. Phys. D: Appl. Phys. 2009, 42, 035102. https://doi.org/10.1088/0022-3727/42/3/035102
- Morales, A. E.; Zaldivar, M. H.; Pal, U. Opt. Mater, 2006, 29, 100. https://doi.org/10.1016/j.optmat.2006.03.010
- Fang, T.-H.; Kang, S.-H. Curr. Appl. Phys. 2010, 10, 1076. https://doi.org/10.1016/j.cap.2010.01.001
- Chien, F. S.-S.; Wang, C.-R.; Chan, Y.-L.; Lin, H.-L. Sens. Actuators B 2010, 144, 120. https://doi.org/10.1016/j.snb.2009.10.043
- Oh, S.; Jung, M.; Koo, J.; Cho, Y.; Choi, S.; Yi, S.; Kil, G.; Chang, J. Physica E 2010, 42, 2285. https://doi.org/10.1016/j.physe.2010.05.005
- Cho, M. Y.; Kim, M. S.; Choi, H. Y.; Yim, K. G.; Leem, J.-Y. Bull. Korean Chem. Soc. 2011, 32, 880. https://doi.org/10.5012/bkcs.2011.32.3.880
- Kim, D. Y.; Kim, S.-O.; Kim, M. S.; Yim, K. G.; Kim, S.; Nam, G.; Lee, D.-Y.; Leem, J.-Y. J. Korean Phys. Soc. 2012, 60, 94. https://doi.org/10.3938/jkps.60.94
- Tian, Z.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2, 821. https://doi.org/10.1038/nmat1014
- Nunes, P.; Fortunato, E.; Tonello, P.; Fernandes, F. B.; Vilarinho, P.; Martins, R. Vacuum 2002, 64, 281. https://doi.org/10.1016/S0042-207X(01)00322-0
- Hong, C.-S.; Park, H.-H.; Moon, J.; Park, H.-H. Thin Solid Films 2006, 515, 957. https://doi.org/10.1016/j.tsf.2006.07.055
- Sim, K. U.; Shin, S. W.; Moholkar, A. V.; Yun, J. H.; Moon, J. H.; Kim, J. H. Curr. Appl. Phys. 2010, 10, S463. https://doi.org/10.1016/j.cap.2010.02.028
- Ramalingam, R. J.; Chung, G. S. Mater. Lett. 2012, 68, 247. https://doi.org/10.1016/j.matlet.2011.10.071
- Yim K. G.; Jeon, S. M.; Kim, M. S.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. Acta Phys. Pol. A 2012, 121, 214.
- Kim, M. S.; Yim, K. G.; Choi, H. Y.; Cho, M. Y.; Kim, G. S.; Jeon, S. M.; Lee, D.-Y.; Kim, J. S.; Son, J.-S.; Lee, J. I.; Leem, J.-Y. J. Cryst. Growth 2011, 326, 195. https://doi.org/10.1016/j.jcrysgro.2011.01.096
- Kim, M. S.; Yim, K. G.; Kim, D. Y.; Kim S.; Nam, G.; Lee, D.-Y.; Kim, S.-O.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Leem, J.-Y. Electron. Mater. Lett. 2012, 8, 75. https://doi.org/10.1007/s13391-011-0130-y
- Kim, M. S.; Yim, K. G.; Cho, M. Y.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Lee, J. I.; Leem, J.-Y. AIP Conf. Proc. 2011, 1400, 443.
- Baruah, S.; Dutta, J. Sci. Technol. Adv. Mater. 2009, 10, 013001. https://doi.org/10.1088/1468-6996/10/1/013001
- Li, W.-J.; Shi, E.-W.; Zhong, W.-Z.; Yin, Z.-W. J. Cryst. Growth 2009, 203, 186.
- Heller, R. B.; McGannon, J.; Weber, A. H. J. Appl. Phys. 1950, 21, 1283. https://doi.org/10.1063/1.1699591
- Nam, G.; Kim, S.; Kim, M. S.; Yim, K. G.; Kim, D. Y.; Kim, S.-O.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 59, 129. https://doi.org/10.3938/jkps.59.129
- Jeon, J.-W.; Kim, M.; Jang, L.-W.; Hoffman, J. L.; Kim, N. S.; Lee, I.-H. Electron. Mater. Lett. 2012, 8, 27. https://doi.org/10.1007/s13391-012-1091-5
- Kim, M. S.; Yim, K. G.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 59, 2354. https://doi.org/10.3938/jkps.59.2354
- Kim, M. S.; Yim, K. G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 58, 821. https://doi.org/10.3938/jkps.58.821
- Liao, Z.-M.; Zhang, H.-Z.; Zhou, Y.-B.; Xu, J. Zhang, J.-M.; Yu, D.-P. Phys. Lett. A 2008, 372, 4505. https://doi.org/10.1016/j.physleta.2008.04.013
- Djurisic, A. B.; Leung, Y. H.; Tam, K. H.; Ding, L.; Ge, W. K.; Chen, H. Y.; Gwo, S. Appl. Phys. Lett. 2006, 88, 103107. https://doi.org/10.1063/1.2182096
- Kim, M. S.; Yim, K. G.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. Acta Phys. Pol. A 2012, 121, 217.
- Mulvaney, P. Langmuir 1996, 12, 788. https://doi.org/10.1021/la9502711
- Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature, 2003, 424, 824. https://doi.org/10.1038/nature01937
- Jain, A.; Sagar, P.; Mehra, R. M. Solid-State Electron. 2006, 50, 1420. https://doi.org/10.1016/j.sse.2006.07.001
- Kim, M. S.; Kim, T. H.; Kim, D. Y.; Kim, S.-O.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Leem, J.-Y. J. Korean Phys. Soc. 2012, 60, 830. https://doi.org/10.3938/jkps.60.830
Cited by
- Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3335
- Enhanced optical and electrical properties of boron-doped zinc-oxide thin films prepared by using the sol-gel dip-coating method vol.63, pp.9, 2013, https://doi.org/10.3938/jkps.63.1804
- Hydrothermally grown boron-doped ZnO nanorods for various applications: Structural, optical, and electrical properties vol.10, pp.1, 2014, https://doi.org/10.1007/s13391-013-3130-2
- Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon vol.10, pp.3, 2014, https://doi.org/10.1007/s13391-013-3139-6
- Structural, optical, and electrical properties of ZnO thin films deposited by sol-gel dip-coating process at low temperature vol.10, pp.4, 2014, https://doi.org/10.1007/s13391-013-3312-y
- Optimizing the optical properties of fluorine-doped ZnO thin films deposited by sol-gel spin-coating vol.65, pp.4, 2014, https://doi.org/10.3938/jkps.65.509
- Influence of doping behavior of Al on nanostructure, morphology and optoelectronic properties of Al Doped ZnO thin film grown on FTO substrate vol.27, pp.10, 2016, https://doi.org/10.1007/s10854-016-5101-5
- Simulation, Fabrication, and Characterization of Al-Doped ZnO-Based Ultraviolet Photodetectors vol.45, pp.1, 2016, https://doi.org/10.1007/s11664-015-4144-3
- Annealing-induced modifications in sol–gel spin-coated Ga:ZnO thin films vol.78, pp.2, 2016, https://doi.org/10.1007/s10971-016-3958-7
- Tunable Morphology and Doping of ZnO Nanowires by Chemical Bath Deposition Using Aluminum Nitrate vol.121, pp.6, 2017, https://doi.org/10.1021/acs.jpcc.6b11104
- Variation of index of refraction in cobalt doped ZnO nanostructures vol.122, pp.16, 2017, https://doi.org/10.1063/1.5001713
- Fabrication and characterization of hydrothermally grown MgZnO nanorod films for Schottky diode applications vol.23, pp.1, 2017, https://doi.org/10.1007/s00542-015-2724-z
- Nonlinear optical investigations on Al doping ratio in ZnO thin film under pulsed Nd:YAG laser irradiation vol.28, pp.23, 2017, https://doi.org/10.1007/s10854-017-7690-z
- Effects of the pH on the Formation and Doping Mechanisms of ZnO Nanowires Using Aluminum Nitrate and Ammonia vol.56, pp.21, 2017, https://doi.org/10.1021/acs.inorgchem.7b01916
- Dye-modified ZnO nanohybrids: optical properties of the potential solar cell nanocomposites vol.7, pp.3, 2017, https://doi.org/10.1007/s40089-017-0211-5
- B-N Codoped p Type ZnO Thin Films for Optoelectronic Applications pp.0, 2017, https://doi.org/10.1590/1980-5373-mr-2017-0618
- Characterization of transparent semiconducting cobalt doped titanium dioxide thin films prepared by sol–gel process pp.1573-482X, 2017, https://doi.org/10.1007/s10854-017-8011-2
- IMPACT OF N DOPING ON THE PHYSICAL PROPERTIES OF ZnO THIN FILMS pp.1793-6667, 2017, https://doi.org/10.1142/S0218625X1850035X
- Structural, Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering vol.33, pp.6, 2016, https://doi.org/10.1088/0256-307X/33/6/066101
- Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films vol.73, pp.6, 2018, https://doi.org/10.1515/zna-2017-0386
- Effect of consumption of the sol–gel deposited ZnO seed layer on the growth and properties of high quality ZnO nanorods vol.29, pp.14, 2018, https://doi.org/10.1007/s10854-018-9298-3
- Characteristic properties of spin coated ZnO thin films: the effect of Ni doping vol.89, pp.9, 2013, https://doi.org/10.1088/0031-8949/89/9/095802
- Enhanced photocatalytic activity of ZnO nanorods grown on Ga doped seed layer vol.83, pp.None, 2013, https://doi.org/10.1016/j.spmi.2015.02.031
- Fabrication and X-Ray Excited Luminescence of Ga- and In-Doped ZnO Nanorods vol.63, pp.2, 2013, https://doi.org/10.1109/tns.2015.2505059
- Enhanced Photoelectrochemical Water Splitting of Hydrothermally-Grown ZnO and Yttrium-doped ZnO NR Arrays vol.454, pp.None, 2013, https://doi.org/10.1088/1757-899x/454/1/012033
- The Path of Gallium from Chemical Bath into ZnO Nanowires: Mechanisms of Formation and Incorporation vol.58, pp.15, 2019, https://doi.org/10.1021/acs.inorgchem.9b01413
- The effect of annealing and layer numbers on the optical and electrical properties of cobalt-doped TiO2 thin films vol.6, pp.11, 2013, https://doi.org/10.1088/2053-1591/ab4662
- Characteristics of Ga-doped ZnO thin-film ultraviolet photodetectors fabricated on patterned Si substrate vol.35, pp.1, 2013, https://doi.org/10.1088/1361-6641/ab5159
- Thermoelectric behaviors of ZnO mesoporous thin films affected by strain induced from the different dopants radii (Al, Ga, and In) vol.119, pp.19, 2013, https://doi.org/10.1063/5.0063497