DOI QR코드

DOI QR Code

Effects of Doping with Al, Ga, and In on Structural and Optical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Nam, Giwoong (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Park, Hyunggil (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Yoon, Hyunsik (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University) ;
  • Lee, Sang-Heon (School of Chemical Engineering, Yeungnam University) ;
  • Kim, Jong Su (Department of Physics, Yeungnam University) ;
  • Kim, Jin Soo (Research Center of Advanced Materials Development (RCAMD), Division of Advanced Materials Engineering, Chonbuk National University) ;
  • Kim, Do Yeob (Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University) ;
  • Kim, Sung-O (Holcombe Department of Electrical and Computer Engineering, Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University) ;
  • Leem, Jae-Young (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
  • Received : 2012.11.22
  • Accepted : 2013.01.30
  • Published : 2013.04.20

Abstract

The structural and optical properties of the ZnO, Al-doped ZnO, Ga-doped ZnO, and In-doped ZnO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction, photoluminescence (PL) and ultraviolet-visible spectroscopy. All the nanorods grew with good alignment on the ZnO seed layers and the ZnO nanorod dimensions could be controlled by the addition of the various dopants. For instance, the diameter of the nanorods decreased with increasing atomic number of the dopants. The ratio between the near-band-edge emission (NBE) and the deep-level emission (DLE) intensities ($I_{NBE}/I_{DLE}$) obtained by PL gradually decreased because the DLE intensity from the nanorods gradually increased with increase in the atomic number of the dopants. We found that the dopants affected the structural and optical properties of the ZnO nanorods including their dimensions, lattice constants, residual stresses, bond lengths, PL properties, transmittance values, optical band gaps, and Urbach energies.

Keywords

References

  1. Willander, M.; Nur, O.; Zhao, Q. X.; Yang, L. L.; Lorenz, M.; Cao, B. Q.; Pérez, J. Z.; Czekalla, C.; Zimmermann, G.; Grundmann, M.; Bakin, A.; Behrends, A.; Suleiman, M. A.; Shaer, A. E.; Mofor, A. C.; Postels, B.; Waag, A.; Boukos, N.; Trvalos, A.; Kwack, H. S.; Guinard, J.; Dang, D. L. S. Nanotechnology 2009, 20, 332001. https://doi.org/10.1088/0957-4484/20/33/332001
  2. Guo, H.; Zhou, J.; Lin, Z. Electrochem. Commun. 2008, 10, 146. https://doi.org/10.1016/j.elecom.2007.11.010
  3. Chu, S.; Olmedo, M.; Yang, Z.; Kong, J.; Liu, J. Appl. Phys. Lett. 2008, 93, 1811106.
  4. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Appl. Phys. Lett. 2003, 83, 144. https://doi.org/10.1063/1.1589166
  5. Fan, Z.; Lu, J. G. Appl. Phys. Lett. 2005, 86, 123510. https://doi.org/10.1063/1.1883715
  6. Kim, D.; Yun, I.; Kim, H. Curr. Appl. Phys. 2010, 10, S459. https://doi.org/10.1016/j.cap.2010.02.030
  7. Tubtimtae, A.; Lee, M.-W. Superlattices. Microstruct. 2012, 52, 987. https://doi.org/10.1016/j.spmi.2012.08.002
  8. Yang, H.; Lee, J.-S.; Bae, S.; Hwang, J. H. Curr. Appl. Phys. 2009, 9, 797. https://doi.org/10.1016/j.cap.2008.07.016
  9. Fang, T.-H.; Kang, S.-H. J. Phys. D: Appl. Phys. 2008, 41, 245303. https://doi.org/10.1088/0022-3727/41/24/245303
  10. Kim, S.; Kim, M. S.; Nam, G.; Lee, J.-Y. Electron. Mater. Lett. 2012, 8, 445. https://doi.org/10.1007/s13391-012-2071-5
  11. He, H. P.; Tang, H. P.; Ye, Z. Z.; Zhu, L. P.; Zhao, B. H.; Wang, L.; Li, X. H. Appl. Phys. Lett. 2007, 90, 023104. https://doi.org/10.1063/1.2429906
  12. Zhu, L.; Li, J.; Ye, Z.; He, H.; Chen, X.; Zhao, B. Opt. Mater. 2008, 31, 237. https://doi.org/10.1016/j.optmat.2008.03.015
  13. Nayak, P. K.; Yang, J.; Kim, J.; Chung, S.; Jeong, J.; Lee, C.; Hong, Y. J. Phys. D: Appl. Phys. 2009, 42, 035102. https://doi.org/10.1088/0022-3727/42/3/035102
  14. Morales, A. E.; Zaldivar, M. H.; Pal, U. Opt. Mater, 2006, 29, 100. https://doi.org/10.1016/j.optmat.2006.03.010
  15. Fang, T.-H.; Kang, S.-H. Curr. Appl. Phys. 2010, 10, 1076. https://doi.org/10.1016/j.cap.2010.01.001
  16. Chien, F. S.-S.; Wang, C.-R.; Chan, Y.-L.; Lin, H.-L. Sens. Actuators B 2010, 144, 120. https://doi.org/10.1016/j.snb.2009.10.043
  17. Oh, S.; Jung, M.; Koo, J.; Cho, Y.; Choi, S.; Yi, S.; Kil, G.; Chang, J. Physica E 2010, 42, 2285. https://doi.org/10.1016/j.physe.2010.05.005
  18. Cho, M. Y.; Kim, M. S.; Choi, H. Y.; Yim, K. G.; Leem, J.-Y. Bull. Korean Chem. Soc. 2011, 32, 880. https://doi.org/10.5012/bkcs.2011.32.3.880
  19. Kim, D. Y.; Kim, S.-O.; Kim, M. S.; Yim, K. G.; Kim, S.; Nam, G.; Lee, D.-Y.; Leem, J.-Y. J. Korean Phys. Soc. 2012, 60, 94. https://doi.org/10.3938/jkps.60.94
  20. Tian, Z.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. Nat. Mater. 2003, 2, 821. https://doi.org/10.1038/nmat1014
  21. Nunes, P.; Fortunato, E.; Tonello, P.; Fernandes, F. B.; Vilarinho, P.; Martins, R. Vacuum 2002, 64, 281. https://doi.org/10.1016/S0042-207X(01)00322-0
  22. Hong, C.-S.; Park, H.-H.; Moon, J.; Park, H.-H. Thin Solid Films 2006, 515, 957. https://doi.org/10.1016/j.tsf.2006.07.055
  23. Sim, K. U.; Shin, S. W.; Moholkar, A. V.; Yun, J. H.; Moon, J. H.; Kim, J. H. Curr. Appl. Phys. 2010, 10, S463. https://doi.org/10.1016/j.cap.2010.02.028
  24. Ramalingam, R. J.; Chung, G. S. Mater. Lett. 2012, 68, 247. https://doi.org/10.1016/j.matlet.2011.10.071
  25. Yim K. G.; Jeon, S. M.; Kim, M. S.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. Acta Phys. Pol. A 2012, 121, 214.
  26. Kim, M. S.; Yim, K. G.; Choi, H. Y.; Cho, M. Y.; Kim, G. S.; Jeon, S. M.; Lee, D.-Y.; Kim, J. S.; Son, J.-S.; Lee, J. I.; Leem, J.-Y. J. Cryst. Growth 2011, 326, 195. https://doi.org/10.1016/j.jcrysgro.2011.01.096
  27. Kim, M. S.; Yim, K. G.; Kim, D. Y.; Kim S.; Nam, G.; Lee, D.-Y.; Kim, S.-O.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Leem, J.-Y. Electron. Mater. Lett. 2012, 8, 75. https://doi.org/10.1007/s13391-011-0130-y
  28. Kim, M. S.; Yim, K. G.; Cho, M. Y.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Lee, J. I.; Leem, J.-Y. AIP Conf. Proc. 2011, 1400, 443.
  29. Baruah, S.; Dutta, J. Sci. Technol. Adv. Mater. 2009, 10, 013001. https://doi.org/10.1088/1468-6996/10/1/013001
  30. Li, W.-J.; Shi, E.-W.; Zhong, W.-Z.; Yin, Z.-W. J. Cryst. Growth 2009, 203, 186.
  31. Heller, R. B.; McGannon, J.; Weber, A. H. J. Appl. Phys. 1950, 21, 1283. https://doi.org/10.1063/1.1699591
  32. Nam, G.; Kim, S.; Kim, M. S.; Yim, K. G.; Kim, D. Y.; Kim, S.-O.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 59, 129. https://doi.org/10.3938/jkps.59.129
  33. Jeon, J.-W.; Kim, M.; Jang, L.-W.; Hoffman, J. L.; Kim, N. S.; Lee, I.-H. Electron. Mater. Lett. 2012, 8, 27. https://doi.org/10.1007/s13391-012-1091-5
  34. Kim, M. S.; Yim, K. G.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 59, 2354. https://doi.org/10.3938/jkps.59.2354
  35. Kim, M. S.; Yim, K. G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. J. Korean Phys. Soc. 2011, 58, 821. https://doi.org/10.3938/jkps.58.821
  36. Liao, Z.-M.; Zhang, H.-Z.; Zhou, Y.-B.; Xu, J. Zhang, J.-M.; Yu, D.-P. Phys. Lett. A 2008, 372, 4505. https://doi.org/10.1016/j.physleta.2008.04.013
  37. Djurisic, A. B.; Leung, Y. H.; Tam, K. H.; Ding, L.; Ge, W. K.; Chen, H. Y.; Gwo, S. Appl. Phys. Lett. 2006, 88, 103107. https://doi.org/10.1063/1.2182096
  38. Kim, M. S.; Yim, K. G.; Kim, S.; Nam, G.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Leem, J.-Y. Acta Phys. Pol. A 2012, 121, 217.
  39. Mulvaney, P. Langmuir 1996, 12, 788. https://doi.org/10.1021/la9502711
  40. Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Nature, 2003, 424, 824. https://doi.org/10.1038/nature01937
  41. Jain, A.; Sagar, P.; Mehra, R. M. Solid-State Electron. 2006, 50, 1420. https://doi.org/10.1016/j.sse.2006.07.001
  42. Kim, M. S.; Kim, T. H.; Kim, D. Y.; Kim, S.-O.; Lee, D.-Y.; Kim, J. S.; Kim, J. S.; Son, J.-S.; Leem, J.-Y. J. Korean Phys. Soc. 2012, 60, 830. https://doi.org/10.3938/jkps.60.830

Cited by

  1. Temperature-dependent Photoluminescence of Boron-doped ZnO Nanorods vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3335
  2. Enhanced optical and electrical properties of boron-doped zinc-oxide thin films prepared by using the sol-gel dip-coating method vol.63, pp.9, 2013, https://doi.org/10.3938/jkps.63.1804
  3. Hydrothermally grown boron-doped ZnO nanorods for various applications: Structural, optical, and electrical properties vol.10, pp.1, 2014, https://doi.org/10.1007/s13391-013-3130-2
  4. Seed-layer-free hydrothermal growth of zinc oxide nanorods on porous silicon vol.10, pp.3, 2014, https://doi.org/10.1007/s13391-013-3139-6
  5. Structural, optical, and electrical properties of ZnO thin films deposited by sol-gel dip-coating process at low temperature vol.10, pp.4, 2014, https://doi.org/10.1007/s13391-013-3312-y
  6. Optimizing the optical properties of fluorine-doped ZnO thin films deposited by sol-gel spin-coating vol.65, pp.4, 2014, https://doi.org/10.3938/jkps.65.509
  7. Influence of doping behavior of Al on nanostructure, morphology and optoelectronic properties of Al Doped ZnO thin film grown on FTO substrate vol.27, pp.10, 2016, https://doi.org/10.1007/s10854-016-5101-5
  8. Simulation, Fabrication, and Characterization of Al-Doped ZnO-Based Ultraviolet Photodetectors vol.45, pp.1, 2016, https://doi.org/10.1007/s11664-015-4144-3
  9. Annealing-induced modifications in sol–gel spin-coated Ga:ZnO thin films vol.78, pp.2, 2016, https://doi.org/10.1007/s10971-016-3958-7
  10. Tunable Morphology and Doping of ZnO Nanowires by Chemical Bath Deposition Using Aluminum Nitrate vol.121, pp.6, 2017, https://doi.org/10.1021/acs.jpcc.6b11104
  11. Variation of index of refraction in cobalt doped ZnO nanostructures vol.122, pp.16, 2017, https://doi.org/10.1063/1.5001713
  12. Fabrication and characterization of hydrothermally grown MgZnO nanorod films for Schottky diode applications vol.23, pp.1, 2017, https://doi.org/10.1007/s00542-015-2724-z
  13. Nonlinear optical investigations on Al doping ratio in ZnO thin film under pulsed Nd:YAG laser irradiation vol.28, pp.23, 2017, https://doi.org/10.1007/s10854-017-7690-z
  14. Effects of the pH on the Formation and Doping Mechanisms of ZnO Nanowires Using Aluminum Nitrate and Ammonia vol.56, pp.21, 2017, https://doi.org/10.1021/acs.inorgchem.7b01916
  15. Dye-modified ZnO nanohybrids: optical properties of the potential solar cell nanocomposites vol.7, pp.3, 2017, https://doi.org/10.1007/s40089-017-0211-5
  16. B-N Codoped p Type ZnO Thin Films for Optoelectronic Applications pp.0, 2017, https://doi.org/10.1590/1980-5373-mr-2017-0618
  17. Characterization of transparent semiconducting cobalt doped titanium dioxide thin films prepared by sol–gel process pp.1573-482X, 2017, https://doi.org/10.1007/s10854-017-8011-2
  18. IMPACT OF N DOPING ON THE PHYSICAL PROPERTIES OF ZnO THIN FILMS pp.1793-6667, 2017, https://doi.org/10.1142/S0218625X1850035X
  19. Structural, Morphological and Electrical Properties of In-Doped Zinc Oxide Nanostructure Thin Films Grown on p-Type Gallium Nitride by Simultaneous Radio-Frequency Direct-Current Magnetron Co-Sputtering vol.33, pp.6, 2016, https://doi.org/10.1088/0256-307X/33/6/066101
  20. Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films vol.73, pp.6, 2018, https://doi.org/10.1515/zna-2017-0386
  21. Effect of consumption of the sol–gel deposited ZnO seed layer on the growth and properties of high quality ZnO nanorods vol.29, pp.14, 2018, https://doi.org/10.1007/s10854-018-9298-3
  22. Characteristic properties of spin coated ZnO thin films: the effect of Ni doping vol.89, pp.9, 2013, https://doi.org/10.1088/0031-8949/89/9/095802
  23. Enhanced photocatalytic activity of ZnO nanorods grown on Ga doped seed layer vol.83, pp.None, 2013, https://doi.org/10.1016/j.spmi.2015.02.031
  24. Fabrication and X-Ray Excited Luminescence of Ga- and In-Doped ZnO Nanorods vol.63, pp.2, 2013, https://doi.org/10.1109/tns.2015.2505059
  25. Enhanced Photoelectrochemical Water Splitting of Hydrothermally-Grown ZnO and Yttrium-doped ZnO NR Arrays vol.454, pp.None, 2013, https://doi.org/10.1088/1757-899x/454/1/012033
  26. The Path of Gallium from Chemical Bath into ZnO Nanowires: Mechanisms of Formation and Incorporation vol.58, pp.15, 2019, https://doi.org/10.1021/acs.inorgchem.9b01413
  27. The effect of annealing and layer numbers on the optical and electrical properties of cobalt-doped TiO2 thin films vol.6, pp.11, 2013, https://doi.org/10.1088/2053-1591/ab4662
  28. Characteristics of Ga-doped ZnO thin-film ultraviolet photodetectors fabricated on patterned Si substrate vol.35, pp.1, 2013, https://doi.org/10.1088/1361-6641/ab5159
  29. Thermoelectric behaviors of ZnO mesoporous thin films affected by strain induced from the different dopants radii (Al, Ga, and In) vol.119, pp.19, 2013, https://doi.org/10.1063/5.0063497