References
- Okada, T.; Kaneko, M. Molecular Catalysts for Energy Conversion, Springer 2008.
- Serov, A. A.; Kwak, C. Catal. Commun. 2009, 10, 1551. https://doi.org/10.1016/j.catcom.2009.04.015
- Stolten, D.; Emonts, B. Fuel Cell Science and Engineering: Materials, Processes, Systems and Technology, Wiley-VCH: 2012.
- Wang, M.-X.; Xu, F.; Sun, H.-F.; Liu, Q.; Artyushkova, K.; Stach, E. A. Electrochim. Acta 2011, 56, 2566. https://doi.org/10.1016/j.electacta.2010.11.019
- Wang, C.; Luo, L.; Wu, Y.; Hou, B.; Sun, L. Mater. Lett. 2011, 65, 2251. https://doi.org/10.1016/j.matlet.2011.04.077
- Jung, N.; Cho, Y.-H.; Choi, K.-H.; Lim, J. W.; Cho, Y.-H.; Ahn, M. Electrochem. Commun. 2010, 12, 754. https://doi.org/10.1016/j.elecom.2010.03.025
- Wang, Y.-J.; Wilkinson, D. P.; Zhang, J. Chem. Rev. 2011, 111, 7625. https://doi.org/10.1021/cr100060r
- Wiechowski, A.; Koper, M. Fuel Cell Catalysis: A Surface Science Approach, Wiley: 2009.
- Murray, L. J.; Dinca, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294. https://doi.org/10.1039/b802256a
- Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112, 1196. https://doi.org/10.1021/cr2003147
- Yang, L.; Kinoshita, S.; Yamada, T.; Kanda, S.; Kitagawa, H. Angew. Chem. Int. Ed. 2010, 49, 5348. https://doi.org/10.1002/anie.201000863
- Buser, H. J.; Schwarzenbach, D.; Petter, W.; Ludi, A. Inorg. Chem. 1977, 16, 2704. https://doi.org/10.1021/ic50177a008
- Gispert, J. R. Coordination Chemistry, Wiley-VCH: 2008.
- Leong, W. L.; Vittal, J. J. Chem. Rev. 2011, 111, 688. https://doi.org/10.1021/cr100160e
- Gao, S.; Zhao, N.; Shu, M.; Che, S. Appl. Catal. A. 2010, 388, 196. https://doi.org/10.1016/j.apcata.2010.08.045
- Uemura, T.; Kitagawa, S. J. Am. Chem. Soc. 2003, 125, 7814. https://doi.org/10.1021/ja0356582
- MacGillivray, L. R. Metal-Organic Frameworks: Design and Application, Wiley: 2010.
- Larionova, J.; Guari, Y.; Sangregorio, C.; Guerin, C. New. J. Chem. 2009, 33, 1177. https://doi.org/10.1039/b900918c
- Jeon, T.-Y.; Yoo, S. J.; Park, H.-Y.; Kim, S.-K.; Lim, S.; Peck, D. Langmuir 2012, 28, 3664. https://doi.org/10.1021/la2042668
- Zhou, W.-P.; Sasaki, K.; Su, D.; Zhu, Y.; Wang, J. X.; Adzic, R. R. J. Phys. Chem. C 2010, 114, 8950. https://doi.org/10.1021/jp100283p
- Savadogo, O.; Lee, K.; Oishi, K.; Mitsushima, S.; Kamiya, N.; Ota, K.-I. Electrochem. Commun. 2004, 6, 105. https://doi.org/10.1016/j.elecom.2003.10.020
- Raghuveer, V.; Manthiram, A.; Bard, A. J. J. Phys. Chem. B 2005, 109, 22909. https://doi.org/10.1021/jp054815b
Cited by
- ChemInform Abstract: Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application. vol.44, pp.32, 2013, https://doi.org/10.1002/chin.201332020
- Modulated large-pore mesoporous silica as an efficient base catalyst for the Henry reaction pp.1568-5675, 2018, https://doi.org/10.1007/s11164-017-3188-9
- Copper oxide–graphene oxide nanocomposite: efficient catalyst for hydrogenation of nitroaromatics in water vol.6, pp.1, 2019, https://doi.org/10.1186/s40580-019-0176-3
- Palladium nanoparticle anchored polyphosphazene nanotubes: preparation and catalytic activity on aryl coupling reactions vol.38, pp.3, 2013, https://doi.org/10.1007/s12034-015-0923-y
- Recent Advances in the Nanocatalyst-Assisted NaBH4 Reduction of Nitroaromatics in Water vol.4, pp.1, 2013, https://doi.org/10.1021/acsomega.8b03051
- Palladium Nanocatalysts on Hydroxyapatite: Green Oxidation of Alcohols and Reduction of Nitroarenes in Water vol.9, pp.19, 2013, https://doi.org/10.3390/app9194183
- Palladium Nanoparticles on Assorted Nanostructured Supports: Applications for Suzuki, Heck, and Sonogashira Cross-Coupling Reactions vol.3, pp.3, 2013, https://doi.org/10.1021/acsanm.9b02017