DOI QR코드

DOI QR Code

잘 알려진 창의적 과학자들의 과학적 문제 발견 패턴 분석

An Analysis on Problem-Finding Patterns of Well-Known Creative Scientists

  • 투고 : 2013.07.21
  • 심사 : 2013.12.10
  • 발행 : 2013.12.31

초록

우리나라 과학교육에서는 과학 창의성의 계발을 강조하고 있다. 본 연구에서는 과학 창의성으로서 과학자들의 문제 발견에서 나타나는 패턴을 탐색하는데 목적을 두었다. 사례별 당시의 과학사적 상황, 문제 발견의 과정 및 문제 해결에 대한 내용을 구체적으로 논의하였다. 연구 결과, 과학자 10명이 과학사적 사건을 발견할 때 특징적으로 나타내는 문제 발견의 패턴은 다음과 같은 5가지 패턴으로 발견되었다. 패턴 1의 경우는 당시의 이론이나 설명이 불충분하거나 모순 또는 오류를 발견함에 의해 과학적 문제를 발견하는 것으로, 여기에는 라부아지에, 멘델, 왓슨의 문제 발견이 포함되었다. 패턴 2의 경우는 당대의 지식으로는 설명되지 않는 이상한 현상을 관찰함에 의해 문제를 발견하는 것으로, 여기에는 러더퍼드와 뢴트겐의 문제 발견이 포함되었다. 패턴 3의 경우는 비유 추론에 의해 문제를 발견하는 것으로, 카르노와 영의 문제 발견이 포함되었다. 패턴 4의 경우는 새롭게 발명된 관찰 또는 측정 기구를 사용하여 새로운 현상을 관찰함으로써 문제를 발견하는 것으로, 갈릴레이의 문제 발견이 포함되었다. 패턴 5의 경우는 연구 프로젝트 수행 중에 그 연구와 관련된 새로운 문제를 발견하는 것으로, 패러데이와 케플러의 문제 발견이 포함되었다.

Nurturing students' scientific creativity is considered an important element in science education in Korea. The study aims to explore patterns displayed by well-known scientists in their quest for problem finding. Each case of scientists' course of problem solving is described in terms of historical background, a process of problem finding, and a process of problem solving. There are five patterns from ten scientists which are as follows: Pattern 1 is that scientists find problems from insufficiencies and/or errors from explanation of theories at the time and the related cases are A. Lavoisier, G. Mendel, and J. Watson. Pattern 2 shows that scientists find a problem because of strange phenomena unexplained by theories at the time, and here important case studies are E. Rutherford and W. R$\ddot{o}$ntgen. Pattern 3 demonstrates that scientists find a problem from analogical reasoning between known theories and unknown science phenomena. The cases include S. Carnot and T. Young. Pattern 4 points to the fact that scientists find a problem while they utilize a newly invented experimental instrument. Here, G. Galilei is an important example. Pattern 5 establishes that scientists happen to find a problem while they conduct research projects. The works of M. Faraday and J. Kepler are prominent case studies related to this pattern.

키워드

참고문헌

  1. Baily, C. (2013). Early atomic models - From mechanical to quantum (1904-1913). European Physical Journal H, 38, 1-38. https://doi.org/10.1140/epjh/e2012-30009-7
  2. Carnot, S. (1824). Reflections on the motive power of fire. In E. Mendosa (Ed.) (1988), Sadi Carnot: Reflections on the Motive Power of Fire. New York: Dover Publications, Inc.
  3. Cho, C. M. (1997). Discovery of oxygen. Journal of Basic Science (Basic Science Research Institute, Sungshin Women's University), 15, 1-15.
  4. Cohen, I. B. (1985). The birth of a new physics. New York: W W Norton & Company.
  5. Crombie, A. C. (1990). Science, optics and music in medieval and early modern thought. London: The Hambledon Press.
  6. Drake, S. (1957). Discoveries and opinions of Galileo. New York: Doubleday Anchor Books.
  7. Einstein, A., & Infeld, L. (1938). The evolution of physics. New York: Simon & Schuster.
  8. Faraday, M. (2005). Experimental researches in electricity, vol III.1, London: Elibron Classics.
  9. Feldhusen, J. F., & Treffinger, D. J. (1985). Creative thinking and problem solving in gifted education (3rd ed.). Dubuque, IA: Kendall/Hunt Publishing Company.
  10. Ferguson, K. (2002). Tycho & Kepler. New York: Walker & Company.
  11. Friedman, G., & Friedman, M. (1998). Medicine's 10 greatest discoveries. New Haven, CT: Yale University Press.
  12. Getzels, J. W. (1979). Problem finding: A theoretical note. Cognitive Science, 3, 167-172 https://doi.org/10.1207/s15516709cog0302_4
  13. Halliday, D., Resnick, R., & Walker, J. (2006). Fundamentals of physics (7th ed.). Hoboken, NJ: John Wiley & Sons, Inc.
  14. Hartl, D., & Orel, V. (1992). What did Gregor Mendel think he discovered? Genetics, 131, 245-253.
  15. Henle, M. (1971). The snail beneath the shell. Abraxas, 1, 119-133.
  16. Hong, S. O. (1986). Research on the development of Michael Faraday's concept of lines of magnetic force. Journal of the Korean History of Science Society, 8(1), 48-70.
  17. Hudson, J. (1992). The history of chemistry. London: Macmillan Press Ltd.
  18. Iliffe, R., & Mandelbrote, S. (2013). AHRC Newton Papers Project. East Sussex: University of Sussex.
  19. Im, G. S. (2001). Pioneers of modern physics. Seoul: Dasan Publishing Co.
  20. Jonassen, D. H. (2011). Learning to solve problems: A handbook for designing problem-solving learning environments. New York: Routledge.
  21. Kevles, B. H. (1996). Naked to the bone medical imaging in the twentieth century. Camden, NJ: Rutgers University Press.
  22. Kim, H. S. (1988). Lavoisier's combustion theory. Physics Education, 16(1), 44-49.
  23. Kim, Y. (2006). Kepler's scientific problem finding and the abductive reasoning in his discovery of the retinal image formation. Journal of the Korean Association for Science Education, 26(7), 835-842
  24. Kim, Y. (2010). Abductive Reasoning and Creativity in Physics and Physics Education. Sae Mulli, 60(7), 689-701.
  25. Kragh, H. (2010). Before Bohr: Theories of atomic structure 1850-1913. Reposs #10, University of Aarhus, Denmark.
  26. Klug, A. (1968). Rosalind Franklin and the discovery of the structure of DNA. Nature, 219, 808-810, +843.
  27. Langley, P., Simon, H., Bradshaw, G., & Zytkow, J. (1987). Scientific discovery: Computational explorations of the creative processes. Cambridge: MIT Press.
  28. Lee, P. L. (1997). Lavoisier's oxidation theory. Science Thoughts (Byumyang Publishing Ltd.), 20, 137-146.
  29. Lindberg, D. C. (1976). Theories of vision from al-Kindi to Kepler. Chicago: University of Chicago Press.
  30. Mason, S. F. (1962). A History of the Sciences. NY: Collier Books.
  31. McCormack, A. J., & Yager, R. E. (1989). A new taxonomy of science education. Science Teacher, 56 (2), 47-48.
  32. Meadows, J. (1987). The great scientists. New York: Oxford University Press.
  33. Mendel, G. (1909, 2008). Experiments in plant hybridisation. New York: Cosimo, Inc.
  34. MEST (Ministry of Education, Science, & Technology). (2011). Science curriculum. MEST Notification No. 2011-361, Supplement 9.
  35. Orel, V. (1996). Gregor Mendel: The first geneticist. London: Oxford University Press.
  36. Pauling, L., & Corey, R. B. (1953). A proposed structure for the nucleic acids. PNAS, 39(2), 84-97. https://doi.org/10.1073/pnas.39.2.84
  37. Polanyi, M. (1958). Personal Knowledge: "Towards a Post-Critical Philosophy. Chicago: University of Chicago Press.
  38. Russell, P., Wolfe, S., Hertz., P., & Starr, C. (2009). Biology: The dynamic science. Seoul: Life Science Publishing Co.
  39. Rutherford, E. (1906). Radioactive transformations. London: Constable & Co.
  40. Rutherford, E. (1911). The scattering of -and -articles and the structure of the atom. Philosophical Magazine, 21, 669-688. https://doi.org/10.1080/14786440508637080
  41. Stern, C., & Sherwood, E. (1966). The origin of genetics: A Mendel source book. San Francisco: W.H. Freeman.
  42. Thomson, J. J. (1904). On the structure of the atom: An investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle. Philosophical Magazine, 7, 237-265. https://doi.org/10.1080/14786440409463107
  43. Wade, N. J. (1998). A natural history of vision. Cambridge: The MIT Press.
  44. Watson, J., & Crick, F. (1953). A structure for deoxyribose nucleic acid. Nature, 3(171), 737-738.
  45. Yang, J. S., & Koo, M. J. (2005). The changes in the view of life from the Mendelian genetics age to the biotechnology age. Journal of the Korean History of Science Society, 27(1), 87-107.
  46. Yoo, J. Y. (1990). Prestley and Lavoisier: Conservatism and progressivism in science thoughts. Journal of the Korean History of Science Society, 12(1), 158-165.
  47. Young, T. (1800). Outlines of experiments and inquiries: Respecting sound and light. In G. Peacock (1855), Miscellaneous Works of the late Thomas Young. London: John Murray. pp. 64-98.
  48. Young, T. (1804). Dr. Young's reply to the animadversions of the Edinburgh Reviewers, on some papers published in the Philosophical Transaction. In G. Peacock (1855), Miscellaneous Works of the late Thomas Young. London: John Murray. pp. 192-215.

피인용 문헌

  1. Implications of Science Education as Interdisciplinary Education through the Cases of Scientists and Artists in the Modern Era: Focus on the Relationship Between Science and the Arts vol.34, pp.8, 2014, https://doi.org/10.14697/jkase.2014.34.8.0755
  2. 공대 학생들의 프로젝트 주제 선정을 위한 초기 교수학습 지원 방안 탐구 vol.19, pp.1, 2013, https://doi.org/10.18108/jeer.2016.19.1.37
  3. 대학생들의 융합형 문제 해결 활동에서 문제발견 및 과학기술 분야 활용 양상 분석 vol.36, pp.6, 2016, https://doi.org/10.14697/jkase.2016.36.6.0867
  4. '지혜'의 개념과 과학교사들의 '지혜'에 대한 인식 vol.37, pp.4, 2013, https://doi.org/10.14697/jkase.2017.37.4.731
  5. '문제 만들기' 활동을 통한 발명 교수·학습자료 개발 방향 탐색 vol.18, pp.9, 2017, https://doi.org/10.5762/kais.2017.18.9.290
  6. STEAM R&E를 통한 고등학생의 창의적 인재 역량 변화 vol.37, pp.5, 2013, https://doi.org/10.14697/jkase.2017.37.5.825
  7. 과학자의 창의적 문제해결을 통한 발명교육의 시사점 탐색: 로버트 후크를 중심으로 vol.41, pp.3, 2013, https://doi.org/10.21796/jse.2017.41.3.405
  8. 과학영재들이 문제발견 과정에서 나타내는 과학개념 연결방식과 융합적 사고의 특징 vol.42, pp.2, 2013, https://doi.org/10.21796/jse.2018.42.2.256
  9. 과학자의 문제 해결 과정에서 탐색된 과학 공감 vol.39, pp.2, 2019, https://doi.org/10.14697/jkase.2019.39.2.249
  10. 문제기반학습(Problem-Based Learning) 프로그램에서 과학사 및 과학철학 기반 융합 문제를 해결한 이공계열과 인문사회계열 대학생들의 사례연구 vol.39, pp.4, 2019, https://doi.org/10.14697/jkase.2019.39.4.499
  11. Participation patterns of elementary students in scientific problem finding activities vol.5, pp.1, 2013, https://doi.org/10.1186/s41029-019-0039-6