• Title/Summary/Keyword: 문제 발견

Search Result 2,048, Processing Time 0.035 seconds

An Analysis on Problem-Finding Patterns of Well-Known Creative Scientists (잘 알려진 창의적 과학자들의 과학적 문제 발견 패턴 분석)

  • Kim, Youngmin;Seo, Hae-Ae;Park, Jongseok
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1285-1299
    • /
    • 2013
  • Nurturing students' scientific creativity is considered an important element in science education in Korea. The study aims to explore patterns displayed by well-known scientists in their quest for problem finding. Each case of scientists' course of problem solving is described in terms of historical background, a process of problem finding, and a process of problem solving. There are five patterns from ten scientists which are as follows: Pattern 1 is that scientists find problems from insufficiencies and/or errors from explanation of theories at the time and the related cases are A. Lavoisier, G. Mendel, and J. Watson. Pattern 2 shows that scientists find a problem because of strange phenomena unexplained by theories at the time, and here important case studies are E. Rutherford and W. R$\ddot{o}$ntgen. Pattern 3 demonstrates that scientists find a problem from analogical reasoning between known theories and unknown science phenomena. The cases include S. Carnot and T. Young. Pattern 4 points to the fact that scientists find a problem while they utilize a newly invented experimental instrument. Here, G. Galilei is an important example. Pattern 5 establishes that scientists happen to find a problem while they conduct research projects. The works of M. Faraday and J. Kepler are prominent case studies related to this pattern.

How Many Korean Science High-school Students Find the Same Scientific Problem as Kepler Found in Optics and Physiology? (얼마나 많은 과학고등학교 학생들이 케플러가 광학과 생리학에서 발견한 과학적 문제를 발견하는가?)

  • Kim, Young-Min
    • Journal of Gifted/Talented Education
    • /
    • v.21 no.2
    • /
    • pp.575-589
    • /
    • 2011
  • The aims of this study are to investigate how Kepler found a scientific problem for the retinal image theory and to investigate how the science high-school students respond when the same situation is applied to them. And their results was compared with general high-school students' results. Kepler found the scientific problem in the eye vision through the critical analysis of contemporary theories of vision, based on his relevant knowledge of optics. When we applied the same situation to the Korean science high school and general high-school students, only a few of science high-school students found the scientific problem as same as Kepler's finding. From the results, it is suggested that in development of creativity teaching material, the situations like Kepler's problem finding need to be included in the programs.

Effects of Open-Situation Scientific Problem-Making Activity on the Scientific Problem-Finding Ability of Pre-Service Teachers (개방적 상황에서 과학적 문제 만들기 활동이 예비교사의 과학적 문제발견능력에 미치는 영향)

  • Hwang, Yohan;Park, Yunebae
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.109-119
    • /
    • 2015
  • In this study, we investigated how the scientific problem-finding ability of pre-service teachers is improved through open-situation scientific problem-making activity. We organized two experimental groups and a control group by degree of participation. The 1st experimental group is an actively participating class, while the 2nd experimental group is a passively participating class. We developed and applied a worksheet for training in problem-making. The pre-service teachers filled in the worksheet for problem-making once a week for seven weeks, then the lecturer gave feedback for every worksheet. We developed and applied a problem finding test in an open-situation to measure their problem finding ability at pre- and post-training. As a result of the training, problem level and diversity improved for pre-service teachers through continuous problem-making activities and feedback. The 1st experiment group significantly improved on the quality and quantity of problems. Especially in the originality, elaboration, verifiability, and variables' category, the 1st experimental group significantly improved compared to the control group and the 2nd experimental group. On the other hand, the quality and quantity of problems of the 2nd experimental group decreased. These results provide a basis for correlation between training attitude and improvement of problem-finding ability. Based on the result of this study, continuous problem-making training and feedbacks are helpful in improving the problem-finding ability of pre-service teachers.

Analysis of Characteristics of Scientific Inquiry Problem Finding Process in Small Group Free Inquiry (소집단 자유 탐구에서 과학적 탐구 문제 발견 과정의 특징 분석)

  • Cheon, Myeongki;Lee, Bongwoo
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.6
    • /
    • pp.865-874
    • /
    • 2018
  • The purpose of this study is to explore the process of inquiry problem finding in high school students' small group free-inquiry. For this purpose, 91 second grade high school students took part in small group free-inquiry. We conducted interviews with students (48 students in 15 groups) who were relatively successful in the inquiry performed for one semester (about 4 months). Based on the results of the interviews, we analyzed the characteristics of the inquiry problem finding through the steps and strategies in the inquiry problem finding process. The main results are as follows: First, in the inquiry problem finding process, steps such as selecting keyword, presenting an inconvenience, presenting a question, and finding an inquiry problem were found, and in particular, the process of selecting the keyword that correspond to the subject of inquiry, such as the material and situation of inquiry, is very important step in inquiry problem finding. Second, the strategies that students used in the process of finding inquiry problem included searching information, review of prior research, sharing of knowledge and experience, linking and extension of knowledge and experience, environmental awareness, expert consultation, discussion of suitability, elaboration, etc. Third, finding an inquiry problem was relatively easy in the inquiry for finding out problems (i.e. inconvenience) in everyday life and investigating ways to solve them. Fourth, the review of prior researches through the internet was useful in the process of selecting keyword and elaboration. Fifth, the factors that students consider when selecting one of several candidate inquiry problems are feasibility, real-life applicability, and economic condition. Sixth, the current affairs had a positive impact on the inquiry problem finding. Based on the above results, we discussed some ways to increase students' inquiry problem finding ability.

An Analysis of High School Students' Activity on Problem-finding in III-structured Scientific Problem Situation (낮게 구조화된 과학적 문제 상황에서 고등학생들의 문제발견 활동 분석)

  • Ryu, Si-Kyung;Park, Jong-Seok
    • Journal of The Korean Association For Science Education
    • /
    • v.26 no.6
    • /
    • pp.765-774
    • /
    • 2006
  • The purpose of this study was to suggest an instructional direction for improving scientific problem-finding ability. For this purpose, the present study made an in-depth analysis about activity on problem finding tasks of high school students in an ill-structured scientific problem situation. Subjects were divided into two groups (cooperative and individual) and two kinds of problem finding tasks were administered to two groups. Results indicated that a cooperative activity on problem finding happened to a series of steps exploring problem situation, expressing knowledge and experience, discussing provisional problems, creating various problems and selecting the best problem. Besides, a cooperative activity on problem finding depended heavily on prior knowledge and experience, and in the meantime, various scientific concepts turned out to naturally be expressed. As for the problems found out during a cooperative activity, their scores in creativity factors, including the degree of agreement in original problem selection came out to be on the whole, as excellent. In addition, the types of the problems found out in open problem situation showed that they were more various than those found out in closed problem situation. Subjects perceived that activity on problem finding had positive influence on scientific concept and science process skills. Findings of this study have the following educational implications: First, it is needed to prepare for educational environment that enables students to explore various knowledge and information. Second, the offering of various opportunities is needed to enlarge the scope of scientific knowledge and experience. Third, it is needed to prepare for a study atmosphere that lets students express their knowledge and experiences freely.

Features of Problem-Finding and Problem-Solving of the Secondary Gifted Students in the Context of STEAM Convergent Problems (STEAM 문제 상황에서 중등 영재반 학생들이 나타낸 문제의 발견과 해결 특성)

  • Lee, Eunseon;Sim, Jaeho
    • Journal of Science Education
    • /
    • v.45 no.1
    • /
    • pp.23-41
    • /
    • 2021
  • This study is to investigate the characteristics of problem-finding and problem-solving abilities demonstrated by the secondary gifted students in the context of STEAM convergent problems. For this, using the STEAM convergence problem solving ability test, we qualitatively and quantitatively compared and analyzed the workbook outputs written in the process of finding and solving problems for each student in the gifted class. The results are as follows: First, we found that the speciality of the major of the proposed activity paper influenced the preference for questions and pattern of finding problems. Second, it was found that the difference in the ability to find and solve problems for a specific task was not by the major of the gifted class, but by the composition of the group. Third, in finding and solving the STEAM convergent problem, the individual creativity and the cooperative creativity of the group were more significant than the major. These results suggest that it is necessary to include the affective factors of gifted students and the concept of cooperation in problem-finding and problem-solving ability evaluation, and there is a need to develop a teaching and learning strategy that can improve cooperative problem-solving skills so that group creativity can be exhibited well.

Problem-Finding Process and Effect Factor by University Students in an Ill-Structured Problem Situation (비구조화된 문제 상황에서 이공계 대학생들의 문제발견 과정 및 문제발견에 영향을 미치는 요인)

  • Kang, Eu-Gene;Kim, Ji-Na
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.4
    • /
    • pp.570-585
    • /
    • 2012
  • The Korean national curriculum for secondary school emphasizes scientific problem solving. In line with the national curriculum, many educational studies have been conducted in relation to science education. The objects of these studies were well-defined and well-structured problems. The studies were criticized for overlooking ill-defined and ill-structured problems. Some research has dealt with problem finding in ill-structured problems, which is related to creativity. There is a need for a study of scientific problem finding process in an ill-structured problem situation, because this study will help teachers wanting to teach scientific problem-finding in an ill-structured problem situation. The objective of this study was to conduct an empirical study on the scientific problem finding process in an ill-structured problem situation. One task of scientific problem finding in an ill-structured problem situation was assigned to 92 university students; thereafter, 32 of them participated in the research through interviews. Results indicated that the scientific problem finding process depended on initial clues and tentative solutions. Initial clues were affected by students' experiences, such as major classes, films, and novels. Tentative solutions were influenced by background knowledge of the tasks. Students screened information browsed on the Internet. They applied some standards for selection, particularly emphasized reliability standards, which are supposed to be studied in other contexts. All the students used assumptions to make their problems appear probable, which could be a useful tool to articulate.

복합 유전자 알고리즘을 이용한 경제적 로트 일정계획 문제

  • ;Edward Silver
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.04a
    • /
    • pp.111-117
    • /
    • 2000
  • 경제적 로트 일정계획 문제(Economic Lot Scheduling Problem : ELSP)는 지난 수십 여 년간 많은 연구가 이루어진 생산일정계획 문제 중의 한 분야이다. 이 문제는 NP-hard 문제이기 때문에 수많은 발견적 기법이 제안되고, 사용되어져 왔다. 그 중에서도 Dobson[1]의 발견적 기법이 그 수행도의 우수성으로 보아 최고의 기법으로 여겨지고 있는데, 본 연구에서는 Dobson[1]의 시변 로트 크기(time varying lot size) 접근방법에 유전자 알고리즘을 이용한 새로운 발견적 기법을 제안하고, 수치실험을 통해서 새로운 기법이 기존의 Dobson[1]의 기법보다 더 우수하다는 것을 보이고자 한다.

  • PDF

An Analysis of Correlation between Relational Understanding and Creative Math Problem Finding Ability (관계적 이해와 창의적 수학 문제발견능력과의 상관관계 분석)

  • Kim, Eun-Jin;Kwean, Hyuk-Jin
    • Journal of the Korean School Mathematics Society
    • /
    • v.15 no.3
    • /
    • pp.511-533
    • /
    • 2012
  • In order to determine whether there is a significant correlation between relational understanding and creative math. problem finding ability, this study performed relational understanding and problem finding ability tests on a sample of 186 8th grade middle school students. According to the study results, we found a very significant positive correlation between relational understanding and the creativity of the mathematising ability and the combining ability of mathematical concepts in the problem finding ability. Although there was no statistically significant correlation between relational understanding and the extension ability of mathematical facts, the results from analyzing the students response rate and actual scores in each test showed that students with high relational understanding scores also had high response rate and high scores in analogical reasoning and inductive reasoning. Through this study, therefore, relational understanding is found to have a positive impact on the creative mathematics problem finding ability.

  • PDF

연속소둔공정의 작업단위 편성을 위한 발견적 기법

  • 이유근;이승만;최인준;장수영
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.280-287
    • /
    • 1994
  • 본 논문에서는 광양제철소의 연속소둔공정의 작업단위편성 문제를 소개하고, 그 해결방안을 제시한다. 다루고자 하는 문제는 편성할 스케줄 내에서 전후 대상재간의 다양한 형태의 편차를 최소화하며 sequence의 길이를 최대화하 는 목적함수를 가지며, 동시에 공정의 특성상 발생하는 전후 대상재간의 제 약조건들을 만족시키는 문제이다. 이러한 문제를 해결하기 위하여 부분 최적 해를 구해 주는 순차적인 두가지 발견적(heuristic)기법을 제시한다. 첫째, 일 정의 길이를 최대화하며 전후 대상재간의 제약조건을 만족시키기 위한 "backtracking with look ahead" 기법이다. 특히 이 "backtracking with look ahead" 기법은 이미 개발된 "constraint satisfaction problem"을 기반으로 한 일정계획언어와 이에 연동된 코드생성기를 사용하여 구현되었다. 둘째, sequence내 전후 대상재간의 다양한 형태의 편차를 최소화하며 앞에서 만족 시킨 제약조건들을 계속 유지시키기 위한 평활화(smoothing) 기법이다. 마지 막으로 두가지 발견적 기법을 사용하여 본 연속소둔공정의 작업단위편성 문 제를 해결하는 과정을 보여준다. 이와 같은 발견적 기법을 이용하여 기존의 기법들로는 해결하기 힘든 복잡한 형태의 일정 계획 문제를 해결할 수 있었 다. 복잡한 형태의 일정 계획 문제를 해결할 수 있었 다.